2022 in archosaur paleontology

This article records new taxa of fossil archosaurs of every kind that are scheduled described during the year 2022, as well as other significant discoveries and events related to paleontology of archosaurs that are scheduled to occur in the year 2022.

List of years in archosaur paleontology
In science
2019
2020
2021
2022
2023
2024
2025
In paleontology
2019
2020
2021
2022
2023
2024
2025
In paleobotany
2019
2020
2021
2022
2023
2024
2025
In arthropod paleontology
2019
2020
2021
2022
2023
2024
2025
In paleoentomology
2019
2020
2021
2022
2023
2024
2025
In paleomalacology
2019
2020
2021
2022
2023
2024
2025
In paleoichthyology
2019
2020
2021
2022
2023
2024
2025
In reptile paleontology
2019
2020
2021
2022
2023
2024
2025
In mammal paleontology
2019
2020
2021
2022
2023
2024
2025

Pseudosuchians edit

New pseudosuchian taxa edit

Name Novelty Status Authors Age Type locality Country Notes Images
Confractosuchus[1] Gen. et sp. nov Valid White et al. Late Cretaceous (Cenomanian) Winton Formation   Australia A eusuchian. The type species is C. sauroktonos.  

Diplocynodon kochi[2]

Sp. nov Valid Venczel & Codrea Eocene (Priabonian) Cluj Limestone Formation   Romania

Eptalofosuchus[3]

Gen. et sp. nov Valid Marinho et al. Late Cretaceous Uberaba Formation   Brazil A notosuchian crocodylomorph.
The type species is E. viridi.
Announced in 2021; the final article version was published in 2022.

Eurycephalosuchus[4]

Gen. et sp. nov Wu et al. Late Cretaceous   China A member of Alligatoroidea belonging to the group Orientalosuchina.
The type species is E. gannanensis.

Hanyusuchus[5]

Gen. et sp. nov Iijima et al. Holocene   China A member of the family Gavialidae with a mosaic of gavialine and tomistomine features across the skeleton.
The type species is H. sinensis.
 
Kinyang[6] Gen. et spp. nov Valid Brochu et al. Early - Middle Miocene Maboko Formation

Lokone Formation

  Kenya A broad skulled genus of osteolaemine crocodile. Type species is K. mabokoensis, also includes new species K. tchernovi.

Mambawakale[7]

Gen. et sp. nov Valid Butler et al. Middle Triassic Manda Beds   Tanzania An early diverging pseudosuchian of uncertain affinities.
The type species is M. ruhuhu.
 
Mambawakale

Maomingosuchus acutirostris[8]

Sp. nov Valid Massonne et al. Eocene (late Bartonian–Priabonian) Na Duong Formation   Vietnam

Qianshanosuchus[9]

Gen. et sp. nov

Valid

Boerman et al.

Early Paleocene

Qianshan Basin

  China

Probably a basal member of Crocodyloidea. Genus includes new species Q. youngi.

Sacacosuchus[10]

Gen. et sp. nov Salas-Gismondi et al. Late Miocene Pisco Formation   Peru A member of the family Gavialidae.
The type species is S. cordovai.

Scolotosuchus[11]

Gen. et sp. nov

Valid

Sennikov

Early Triassic

  Russia
(  Volgograd Oblast)

A member of the family Rauisuchidae. The type species is S. basileus. Published online in 2023, but the issue date is listed as December 2022.[11]

Titanochampsa[12]

Gen. et sp. nov

Valid

Fachini et al.

Late Cretaceous

Marília Formation

  Brazil

A crocodyliform with possible neosuchian affinities. Genus includes new species T. iorii.

Yanjisuchus[13] Gen. et sp. nov Valid Rummy et al. Cretaceous (AlbianCenomanian) Longjing Formation   China A paralligatorid crocodyliform.
The type species is Y. longshanensis.
Announced in 2021; the final article version was published in 2022.

General pseudosuchian research edit

  • A study on the mandible embryogenesis in extant caimans, and on its implications for the knowledge of the evolution of postdentary lower jaw of pseudosuchians, is published by Bona et al. (2022).[14]
  • A study on the musculature of crocodylian and fossil suchian jaws, investigating the impact of the flattening of the skulls of suchians in their evolutionary history on their muscle anatomy, is published by Sellers et al. (2022).[15]
  • Revision of Tsylmosuchus donensis and Scythosuchus basileus is published by Sennikov (2022), who interprets the latter taxon as a junior synonym of the former one, and interprets T. donensis as a likely member of the family Ctenosauriscidae.[16]
  • Partial maxilla of a basal loricatan is described from the Upper Triassic (Carnian) lower Candelária Sequence of the Hyperodapedon Assemblage Zone (Brazil) by Damke et al. (2022), expanding known record of loricatans in this unit.[17]
  • A study aiming to model to the likely gait of Batrachotomus kupferzellensis is published by Polet & Hutchinson (2022).[18]
  • A study on the feeding ecology of Batrachotomus kupferzellensis is published by Mujal et al. (2022).[19]

Aetosaur research edit

  • A study on the microstructure of the humerus, femur and tibia of Aetosauroides scagliai, and on its implications for the knowledge of the paleobiology of this aetosaur, is published by Ponce, Desojo & Cerda (2022).[20]
  • Description of the anatomy of bones belonging to pelvic girdles of members of the genus Stagonolepis from the Upper Triassic of Krasiejów (Poland) is published by Desmet, Antczak & Bodzioch (2022).[21]

Crocodylomorph research edit

  • A study on the macroscopic structure of osteoderms of extant and extinct crocodylomorphs, including the first description of osteoderms of Iberosuchus, is published by Pochat-Cottilloux et al. (2022), who interpret their findings as indicative of deeper osteoderm implantation within the dermis in Iberosuchus than in other studied taxa, as well as indicative of the loss of ornamentation of osteoderms in derived notosuchians, which might be linked to their terrestrial lifestyle and specific thermoregulation strategy.[22]
  • A study on the evolution of palatal anatomy in early crocodylomorphs is published by Dollman & Choiniere (2022).[23]
  • An ilium of an early diverging crocodylomorph is described from the Upper Triassic Otis Chalk assemblage (Colorado City Formation, Dockum Group; Texas, United States) by To, Nesbitt, Stocker (2022), expanding the knowledge of the distribution of early crocodylomorphs during the Late Triassic.[24]
  • Description of the anatomy of the holotype specimen of Junggarsuchus sloani, its comparison to Dibothrosuchus elaphros, and a study on the affinities of both taxa is published by Ruebenstahl et al. (2022).[25]
  • Review of the type material of the crocodylomorph ichnotaxon Crocodylopodus meijidei from the Berriasian of Spain, and a study on the locomotion of the trackmaker, is published by Castanera et al. (2022).[26]
  • A study on the bone histology and growth patterns of Neuquensuchus universitas, Notosuchus terrestris, Mariliasuchus amarali and Adamantinasuchus navae is published by Marsà et al. (2022).[27]
  • A study on the thermal physiology of notosuchians is published by Cubo et al. (2022), who interpret their findings as indicating that Araripesuchus wegeneri, Armadillosuchus arrudai, Baurusuchus, Iberosuchus macrodon and Stratiotosuchus maxhechti were ectothermic.[28]
  • A study on the osteoderm histology of Cretaceous notosuchians from Brazil is published by Sena et al. (2022), who report evidence of Sharpey's fibres in Armadillosuchus arrudai, Itasuchus jesuinoi and baurusuchids interpreted as indicative of the presence of thick leathery layer of skin overlying osteoderms, and report the presence of the vascular canals in some sampled osteoderms which might have increased the capacity of heat transfer.[29]
  • Description of the microstructure of the tooth and tooth attachment tissues of Notosuchus terrestris is published by Navarro et al. (2022), who find the relative and absolute enamel thickness of N. terrestris to be similar to those reported for carnivorous notosuchians such as baurusuchids, and interpret their findings as indicating that the tooth growth rates of N. terrestris were reduced in comparison with other notosuchians.[30]
  • A study on the bone histology of Mariliasuchus amarali, based on a new specimen is published by Sena et al. (2022).[31]
  • A study on the palatal anatomy of Sebecus icaeorhinus and its implications for the knowledge of the variability in the palatal anatomy within Sebecidae, is published by Bravo et al. (2022).[32]
  • A study on the phylogenetic relationships of neosuchians and on timing of the origination of key clades in neosuchian evolution is published by Groh et al. (2022).[33]
  • A nearly complete premaxilla of a member of the genus Elosuchus, about 40% larger than the largest premaxilla of members of this genus known so far, is described by Parra & Sellés (2022), who interpret this finding as indicating that Elosuchus achieved remarkable body size proportions.[34]
  • A study on the evolution of salt glands in thalattosuchians is published by Cowgill et al. (2022).[35]
  • A study on the feeding ecology of teleosauroids, as inferred from the dentition and mandibular characteristics, is published by Johnson et al. (2022), who interpret their findings as indicative of a narrow feeding ecological divide between teleosaurids and machimosaurids.[36]
  • Fossil material of an Early Jurassic teleosauroid crocodylomorph is described from the Chaara cave (Morocco) by Hicham et al. (2022), representing the oldest African thalattosuchian reported to date, and indicating that thalattosuchians were widely distributed as soon as the earliest Jurassic.[37]
  • Serafini et al. (2022) describe a clustered mass of bones of an aeolodontine teleosaurid from the Upper Jurassic Rosso Ammonitico Veronese Formation (Italy) interpreted as a regurgitalite, representing the first crocodylomorph described in a regurgitalite and expanding known geographic range of aeolodontines.[38]
  • Le Mort et al. (2022) describe a specimen of Metriorhynchus (with affinities to M. superciliosus) from the Middle Jurassic (Callovian) of Vaches-Noires cliffs (Normandy, France), report the presence of diagnostic criteria of different metriorhynchids in the skeleton of this specimen, and evaluate the implications of this specimen for the knowledge of the taxonomic value of the criteria used to distinguish between the different Callovian and Oxfordian metriorhynchid species.[39]
  • A study on the phylogenetic affinities of Portugalosuchus azenhae is published by Darlim et al. (2022).[40]
  • Lindblad et al. (2022) describe specimens of Borealosuchus griffithi and B. sternbergii preserved in proximity to each other within the same deposits of the Paleocene Ravenscrag Formation (Saskatchewan, Canada), expanding known stratigraphic and geographic range of these species, and interpret this finding as possible evidence of niche partitioning or other ecological relationships between the two species.[41]
  • Crocodylomorph eggshell fragments, probably representing remains of eggs produced by allodaposuchids, are described from the Maastrichtian of the Southern Pyrenees (Huesca, Spain) by Moreno-Azanza et al. (2022), who name a new ootaxon Pachykrokolithus excavatum.[42]
  • Reconstructions of the inner cavities of the holotype skulls of Arenysuchus gascabadiolorum and Agaresuchus subjuniperus are presented by Puértolas-Pascual et al. (2022).[43]
  • Kuzmin (2022) reviews all known material of long-snouted crocodyliforms from the Upper Cretaceous (Cenomanian–Santonian) of Central Asia, confirms Zholsuchus procerus to be a valid taxon, and argues that it is likely one of the oldest known members of the crown group of Crocodylia.[44]
  • Redescription of the holotype of Notocaiman stromeri, and a study on its taxonomic status and phylogenetic affinities, is published by Bona et al. (2022).[45]
  • A study aiming to estimate the body size of large caimanines from the Miocene of South America, including Purussaurus and Mourasuchus, is published by Paiva et al. (2022).[46]
  • Pessoa-Lima et al. (2022) compare the morphological features and chemical composition of tooth enamel of Purussaurus and extant black caiman.[47]
  • Massonne & Böhme (2022) confirm Diplocynodon levantinicum to be a valid species, and interpret it as Oligocene (Chattian) in age.[48]
  • A study on the anatomy of the skull of Trilophosuchus rackhami is published by Ristevski et al. (2022).[49]
  • Description of the neuroanatomy of Trilophosuchus rackhami is published by Ristevski (2022).[50]
  • Fragmentary mandible of a possible member of the genus Thoracosaurus is described from the lower Maastrichtian of Møns Klint (Denmark) by Voiculescu-Holvad (2022), indicating transatlantic distribution of Gavialoidea dating back to the earliest Maastrichtian.[51]
  • The oldest known fossil material of a member of the genus Crocodylus in Madagascar, dated to between 7670 and 7510 years cal BP, is described by Martin et al. (2022).[52]

Non-avian dinosaurs edit

New dinosaur taxa edit

Name Novelty Status Authors Age Type locality Country Notes Images

Abditosaurus[53]

Gen. et sp. nov

Valid

Vila et al.

Late Cretaceous (Maastrichtian)

Conques Formation

  Spain

A saltasaurine titanosaur.
The type species is A. kuehnei.

 

Bashanosaurus[54]

Gen. et sp. nov

Valid

Dai et al.

Middle Jurassic (Bajocian)

Shaximiao Formation

  China

A basal stegosaur. The type species is B. primitivus.

Bisticeratops[55]

Gen. et sp. nov

Valid

Dalman et al.

Late Cretaceous (Campanian)

Kirtland Formation

  United States
(  New Mexico)

A chasmosaurine ceratopsid. The type species is B. froeseorum.

 

Caieiria[56]

Gen. et sp. nov

Valid

Silva Junior et al.

Late Cretaceous

Serra da Galga Formation

  Brazil

A titanosaur sauropod. The type species is C. allocaudata.

Daspletosaurus wilsoni[57]

Sp. nov

Valid

Warshaw & Fowler

Late Cretaceous (Campanian)

Judith River Formation

  United States
(  Montana)

A tyrannosaurine; a species of Daspletosaurus.

 
Daurlong[58] Gen. et sp. nov Valid Wang et al. Early Cretaceous (Aptian) Longjiang Formation   China A dromaeosaurid theropod. The type species is D. wangi.  

Dzharaonyx[59]

Gen. et sp. nov

Valid

Averianov & Sues

Late Cretaceous (Turonian)

Bissekty Formation

  Uzbekistan

An alvarezsaurid theropod. The type species is D. eski.

Elemgasem[60]

Gen. et sp. nov

Baiano et al.

Late Cretaceous (TuronianConiacian)

Portezuelo Formation

  Argentina

An abelisaurid theropod. The type species is E. nubilus.

Guemesia[61]

Gen. et sp. nov

Valid

Agnolín et al.

Late Cretaceous (Campanian)

Los Blanquitos Formation

  Argentina

An abelisaurid theropod. The type species is G. ochoai.

 
Huallasaurus[62]

Gen. et comb. nov

Valid

Rozadilla et al.

Late Cretaceous (Maastrichtian)

Los Alamitos Formation

  Argentina

A saurolophine hadrosaurid belonging to the tribe Kritosaurini. The type species is 'Kritosaurus' australis (Bonaparte, 1984).

 

Iberospinus[63]

Gen. et sp. nov

Valid

Mateus & Estraviz-López

Early Cretaceous (Barremian)

Papo Seco Formation

  Portugal

A spinosaurid theropod.
The type species is I. natarioi.

 
Ibirania[64] Gen. et sp. nov Valid Navarro et al. Late Cretaceous (Santonian-Campanian) São José do Rio Preto Formation   Brazil A saltasaurine titanosaur.
The type species is I. parva.
 

Iyuku[65]

Gen. et sp. nov

In press

Forster et al.

Early Cretaceous (Valanginian)

Kirkwood Formation

  South Africa

An iguanodontian ornithopod, possibly a dryosaurid.[66] Genus includes new species I. raathi.

Jakapil[67]

Gen. et sp. nov

Riguetti, Apesteguía & Pereda-Suberbiola

Late Cretaceous (Cenomanian)

Candeleros Formation

  Argentina

A thyreophoran, probably a basal member of this group. The type species is J. kaniukura.

 
Kelumapusaura[62]

Gen. et sp. nov

Valid

Rozadilla et al.

Late Cretaceous (Campanian-Maastrichtian)

Allen Formation

  Argentina

A saurolophine hadrosaurid belonging to the tribe Kritosaurini. The type species is K. machi.

 

Maip[68]

Gen. et sp. nov

Valid

Aranciaga Rolando et al.

Late Cretaceous (Maastrichtian)

Chorrillo Formation

  Argentina

A megaraptorid theropod. The type species is M. macrothorax.

 

Malefica[69]

Gen. et sp. nov

Prieto-Márquez & Wagner

Late Cretaceous (Campanian)

Aguja Formation

  United States
(  Texas)

A basally-branching hadrosaurid. Genus includes new species M. deckerti. Announced in 2022; the final article version will be published in 2023.

Mbiresaurus[70]

Gen. et sp. nov

Valid

Griffin et al.

Late Triassic (Carnian)

Pebbly Arkose Formation

  Zimbabwe

An early member of Sauropodomorpha. Genus includes new species M. raathi.

Menucocelsior[71]

Gen. et sp. nov

Valid

Rolando et al.

Late Cretaceous (Campanian-Maastrichtian)

Allen Formation

  Argentina

A titanosaur sauropod.
The type species is M. arriagadai.
Announced in 2021; the final article version was published in 2022.

Meraxes[72] Gen. et sp. nov Valid Canale et al. Late Cretaceous (Cenomanian-Turonian) Huincul Formation   Argentina A carcharodontosaurid theropod. The type species is M. gigas.  

Napaisaurus[73]

Gen. et sp. nov

Valid

Ji & Zhang

Early Cretaceous

Xinlong Formation

  China

A basal member of Iguanodontia. The type species is N. guangxiensis. Announced in 2021; the final article version was published in 2022.

Natovenator[74] Gen. et sp. nov Lee et al. Late Cretaceous (Campanian) Barun Goyot Formation   Mongolia A halszkaraptorine theropod. The type species is N. polydontus.  
Nevadadromeus[75] Gen. et sp. nov Valid Bonde et al. Late Cretaceous (Cenomanian) Willow Tank Formation   United States (  Nevada) An ornithischian, potentially a member of Thescelosauridae. The type species is N. schmitti.
Ondogurvel[76] Gen. et sp. nov Valid Averianov & Lopatin Late Cretaceous (Campanian) Barun Goyot Formation   Mongolia An alvarezsaurid theropod. The type species is O. alifanovi.  

Papiliovenator[77]

Gen. et sp. nov

Valid

Pei et al.

Late Cretaceous (Campanian)

Bayan Mandahu Formation

  China

A troodontid theropod.
The type species is P. neimengguensis.
Announced in 2021; the final article version to be published in 2022.

 

Paralitherizinosaurus[78]

Gen. et sp. nov

Valid

Kobayashi et al.

Late Cretaceous (Campanian)

Osoushinai Formation

  Japan

A therizinosaurid theropod. The type species is P. japonicus.

 
Patagopelta[79] Gen. et sp. nov Valid Riguetti et al. Late Cretaceous (Upper Campanian–lower Maastrichtian) Allen Formation   Argentina A nodosaurid ankylosaur. The type species is P. cristata.

Perijasaurus[80]

Gen. et sp. nov

Rincón et al.

Jurassic (ToarcianAalenian)

La Quinta Formation

  Colombia

An early member of Eusauropoda. The type species is P. lapaz.

Ruixinia[81]

Gen. et sp. nov

In press

Mo et al.

Early Cretaceous (Barremian)

Yixian Formation

  China

A somphospondylan titanosauriform. The type species is R. zhangi.

Sierraceratops[82]

Gen. et sp. nov

Valid

Dalman et al.

Late Cretaceous (latest CampanianMaastrichtian)

Hall Lake Formation

  United States
(  New Mexico)

A chasmosaurine ceratopsid.
The type species is S. turneri.
Announced in 2021; the final article version will be published in 2022.

 
Sierraceratops
Transylvanosaurus[83] Gen. et sp. nov Augustin et al. Late Cretaceous (Maastrichtian)   Romania A rhabdodontid ornithopod. The type species is T. platycephalus.

Tuebingosaurus[84]

Gen. et sp. nov

Valid

Regalado Fernandez & Werneburg

Late Triassic

Trossingen Formation

  Germany

A sauropodomorph dinosaur, an early member of Massopoda. The type species is T. maierfritzorum.

 

Tyrannosaurus imperator[85]

Sp. nov

Disputed

Paul, Persons & Van Raalte

Late Cretaceous (late Maastrichtian)

Hell Creek, Lance, Laramie, Arapahoe, McRae?, North Horn?, and Javelina? Formations

  United States
(  Montana,
  North Dakota,
  South Dakota,
  Wyoming,
  New Mexico?,
  Texas?,
  Utah?)

A tyrannosaurine; a proposed species of Tyrannosaurus. Carr et al. (2022) considered the evidence presented by Paul, Persons & Van Raalte (2022) to be insufficient to support the recognition of T. imperator as a species distinct from Tyrannosaurus rex.[86]
 
FMNH PR 2081 ("Sue"), the holotype of T. imperator

Tyrannosaurus regina[85]

Sp. nov

Disputed

Paul, Persons & Van Raalte

Late Cretaceous (late Maastrichtian)

Hell Creek, Lance, Ferris, Denver, Frenchman, Willow Creek, and Scollard Formations

  Canada
(  Alberta,
  Saskatchewan)
  United States
(  Colorado,
  Montana,
  North Dakota,
  South Dakota,
  Wyoming)

A tyrannosaurine; a proposed species of Tyrannosaurus. Carr et al. (2022) considered the evidence presented by Paul, Persons & Van Raalte (2022) to be insufficient to support the recognition of T. regina as a species distinct from Tyrannosaurus rex.[86]
 
MOR 555 ("Wankel rex"), the holotype of T. regina

Yuxisaurus[87]

Gen. et sp. nov

Valid

Yao et al.

Early Jurassic (SinemurianToarcian)

Fengjiahe Formation

  China

An early thyreophoran. The type species is Y. kopchicki.

 

Yuzhoulong[88]

Gen. et sp. nov

Valid

Dai et al.

Middle Jurassic (probably Bathonian)

Shaximiao Formation

  China

An early diverging macronarian sauropod. The type species is Y. qurenensis.

General non-avian dinosaur research edit

  • Wilmsen, Fürsich, and Majidifard (2022) describe a fossil trackway from the Maastrichtian Farrokhi Formation (central Iran) made by indeterminate dinosaurs, which represents the youngest evidence of dinosaur locomotion from the Middle East.[89]
  • A study on the diversity of form and function of teeth in early-diverging dinosaurs is published by Ballell, Benton & Rayfield (2022), providing evidence of a previously unrecognized functional diversity in the dentitions of early dinosaurs, and indicating that either carnivory or omnivory was the ancestral diet of dinosaurs, with obligate herbivory interpreted as a late evolutionary innovation in both Sauropodomorpha and Ornithischia.[90]
  • Olsen et al. (2022) present evidence from the Late Triassic and Early Jurassic strata of the Junggar Basin (northwest China) indicating that during the early Mesozoic dinosaurs were present at arctic latitudes with freezing winter temperatures, and argue that non-avian dinosaurs were likely primitively insulated and that their insulation enabled them to survive in cold temperatures, take advantage of the rich plant resources in the colder high latitudes, and live through episodes of volcanically induced winters during the Triassic–Jurassic extinction event.[91]
  • A study on the impact Early Jurassic Jenkyns Event, affecting terrestrial environments with global warming, perturbation of the carbon cycle, enhanced weathering and wildfires, on terrestrial ecosystems, including dinosaur assemblages, is published by Reolid, Ruebsam & Benton (2022);[92] the same authors subsequently review the fossil record of Early Jurassic dinosaurs, and confirm that the Jenkyns Event was an important biotic crisis affecting dinosaurs.[93]
  • A study on the ecomorphospace occupation of major megaherbivorous dinosaur clades from the Late Jurassic through to the end of the Late Cretaceous in North America is published by Wyenberg-Henzler (2022).[94]
  • A study on the age of a new sauropod-dominated dinosaur fauna from the Lower Shaximiao Formation in Yunyang (Chongqing, China) is published by Zhou et al. (2022).[95]
  • Description of theropod and ornithischian tracks from the Jurassic Imilchil and Isli formations (Morocco), including theropod tracks representing the ichnogenus Changpeipus (otherwise known from abundant occurrences in East Asia, and possibly indicative of faunal exchange between East Asia and northern Africa in the Middle Jurassic), is published by Klein et al. (2022).[96]
  • Revision of the Early Cretaceous dinosaur assemblage from the Mogoito locality (Murtoi Formation, Transbaikalia, Russia) is published by Averianov et al. (2022), who report the presence of Tengrisaurus starkovi, as well as ornithomimosaur, therizinosaur, dromaeosaurid, jeholosaurid (including teeth previously attributed to Psittacosaurus) and indeterminate sauropod and theropod fossil material.[97]
  • New fossil site for the Jehol Biota, preserving faunal assemblage dominated by dinosaur fossils and similar in composition to the Lujiatun Unit of the Yixian Formation at Beipiao (Liaoning, China), is reported from Ningcheng (Inner Mongolia, China) by Zhang et al. (2022).[98]
  • Nudds, Lomax & Tennant (2022) confirm the identification of teeth of Deinonychus antirrhopus and gastroliths associated with a well-preserved specimen of Tenontosaurus tilletti (MANCH LL.12275) from the Lower Cretaceous Cloverly Formation (Montana, United States).[99]
  • Two trackways produced by at least two different dinosaur taxa (smaller, bipedal trackmaker, likely a theropod, and a larger trackmaker of uncertain affinities, possibly a theropod or ornithopod), representing the first records of non-avian dinosaurs from Palestine reported to date, are described from a new site located within the city of Al-Bireh and belonging to the Albian Soreq Formation by Lallensack et al. (2022).[100]
  • Fragment of long bone of a dinosaur is described from the Upper Cretaceous (SantonianCampanian) sediments near the village of Izhberda (Orenburg Oblast, Russia) by Skutschas et al. (2022), who interpret the histological features of this bone as indicative of rapid continuous growth known in large-sized dinosaurs, and interpret this finding as indicative of presence of large dinosaurs in the Southern Urals, which were not subjected to the "island effect" in spite of living on islands or on the continental margin.[101]
  • A set of geochronologic data from the Campanian geological formations of North America's Western Interior Basin is presented by Ramezani et al. (2022), who consider their findings to be indicative of significant age overlap between the main fossil-bearing intervals of the Kaiparowits, Judith River, Two Medicine and Dinosaur Park formations, and interpret their findings as refuting inferences that the proposed latitudinal provinciality of the Campanian dinosaur taxa is only an artefact of age misinterpretation.[102]
  • A large dinosaur tracksite preserving theropod tracks and abundant hadrosaurid tracks is described from the Upper Cretaceous (Campanian) Wapiti Formation (Alberta, Canada) by Enriquez et al. (2022), who evaluate the implications of this finding for the knowledge of the paleoecology of dinosaurs known from the Wapiti Formation.[103]
  • A study on the calcium isotope variability in tooth enamel of dinosaurs from the Upper Cretaceous Dinosaur Park Formation, Horseshoe Canyon Formation and Scollard Formation (Alberta, Canada), and on its implications for the knowledge of the stability of food web structure of non-avian dinosaur communities in the millions of years preceding the end of the Cretaceous, is published by Martin et al. (2022).[104]
  • Tracks of probable hatchling tyrannosaurids, medium and large ornithomimids, small and medium-sized ornithopods and a small hadrosaurid, some of which might document gregarious behaviour, are described from the Campanian–Maastrichtian St. Mary River Formation (Alberta, Canada) by Henderson et al. (2022).[105]
  • A study on the stable isotope compositions of dinosaur eggshells and their associated depositional settings of the Upper Cretaceous Huizhou Formation (China), and on their implications for the knowledge of the environment of dinosaur nesting sites, is published by He et al. (2022).[106]
  • He et al. (2022) describe a new species of the stalicoolithid oogenus Shixingoolithus, S. qianshanensis, as the first dinosaurian record from the Upper Cretaceous Qianshan Basin (Chishan Formation) of Anhui Province, China.[107]
  • Han et al. (2022) establish a high-resolution geochronological framework for the fossil-rich Late Cretaceous sedimentary sequence in the Shanyang Basin (China), and interpret the fossil material from the studied specimens as indicative of sustained low dinosaur biodiversity in the studied area between ~68.2 and ~66.4 million years ago, and of a decline in dinosaur biodiversity from the Campanian to the Maastrichtian.[108]
  • Review of chemistry of the organic molecules detected in non-avian dinosaur fossils to date is published by Tahoun et al. (2022).[109]
  • A study on the phylogenetic affinities of Chilesaurus diegosuarezi is published by Baron (2022).[110]

Ornithischian research edit

  • A study on the evolutionary relationships of ornithischian dinosaurs, based on a modified version of the dataset from the study of Müller & Garcia (2020),[111] is published by Norman et al. (2022), who recover silesaurids as an evolutionary grade of early ornithischian dinosaurs, reintroduce the name Prionodontia for the least inclusive clade that includes Iguanodon bernissartensis, Echinodon becklesii and Scelidosaurus harrisonii, and name a new clade Parapredentata (the least inclusive clade that includes Silesaurus opolensis and Iguanodon bernissartensis).[112]
  • A study on the bone histology, life history and possible sociality of Lesothosaurus diagnosticus is published by Botha, Choiniere & Barrett (2022), who interpret their findings as indicating that this ornithischian lived in multigenerational herds.[113]
  • A study on the phylogenetic relationships of the neornithischian dinosaurs commonly referred to as "hypsilophodontids", aiming to determine causes of conflicting placements of these taxa in different phylogenetic analyses, is published by Brown et al. (2022).[114]
  • New information on the anatomy of the holotype specimen of Parksosaurus warreni is presented by Sues et al. (2022).[115]
  • A study aiming to determine whether ornithischian megaherbivores from the upper Oldman Formation (Alberta, Canada) partitioned their niches based on spatial patterns of occupation and resource-use, based on strontium, oxygen and carbon isotope data, is published by Cullen et al. (2022).[116]
  • A study on the dietary ecology of Hungarosaurus tormai and Mochlodon vorosi is published by Ősi et al. (2022), who interpret their findings as indicative of dietary selectivity and niche partitioning, with Hungarosaurus eating softer vegetation and Mochlodon feeding on tougher material.[117]

Cerapod research edit

  • A study on the anatomy and evolution of the brains of ornithopod dinosaurs is published by Lauters, Vercauteren & Godefroit (2022), who report evidence which might be indicative of hadrosaurids having more developed cognitive abilities than previously assumed.[118]
  • A study on the phylogenetic relationships of iguanodontian ornithopods is published by Poole (2022), who names a new clade Rhabdodontoidea, defined as including all taxa more closely related to Zalmoxes robustus and Rhabdodon priscus than to Dryosaurus altus.[119]
  • A study on the bone histology and life history of an early member of Rhabdodontomorpha from the upper Barremian–lower Aptian of the Vegagete site (Spain) is published by Dieudonné, Torcida Fernández-Baldor & Stein (2022), who interpret the largest Vegagete ornithopod individual as a late subadult, making it the smallest ornithopod ever recovered, and interpret their findings as indicating that, unlike Late Cretaceous rhabdodontids, the Vegagete ornithopod shifted from a quadrupedal stance to a bipedal one at a juvenile stage.[120]
  • Description of postcranial material tentatively assigned to Camptosaurus sp. from the Late Jurassic Villar del Arzobispo Formation (Valencia, Spain) is published by Sánchez-Fenollosa et al. (2022)[121]
  • Redescription of the holotype of Draconyx loureiroi, including description of previously unreported material, and a study on the phylogenetic affinities of this taxon is published by Rotatori, Moreno-Azanza & Mateus (2022).[122]
  • Fossil material of a medium-sized iguanodontid is described from the Early Cretaceous (Barremian) Blesa Formation (Teruel Province, Spain) by Medrano-Aguado et al. (2022), who interpret it as belonging to a potentially new iguanodontid taxon.[123]
  • A new specimen of Iguanodon bernissartensis (a partial axial skeleton) is described from the Early Cretaceous (Upper Barremian) Arcillas de Morella Formation (Spain) by Gasulla et al. (2022)[124]
  • Description of new fossils of large bodied styracosternans pertaining to two different taxa from the Early Cretaceous El Castellar Formation (Teruel, Spain) is published by García-Cobeña, Verdú, and Cobos (2022), who also describe the first dinosaur tracksite from this formation.[125]
  • Fossil material of non-hadrosauriform styracosternans is described from the Lower Cretaceous Khok Kruat Formation by Samathi & Suteethorn (2022), representing the first record of a juvenile iguanodontian co-occurring with an adult (possibly of the same taxon) from Thailand.[126]
  • Description of a nearly complete and articulated skeleton of a juvenile hadrosauroid from the Upper Cretaceous Bayan Shireh Formation (Mongolia), distinct from Gobihadros mongoliensis and likely representing a second, previously unknown hadrosauroid taxon from this formation, is published by Averianov, Lopatin & Tsogtbaatar (2022).[127]
  • A clutch of subspherical dinosaur eggs, at least two of which contain identifiable hadrosauroid embryos with possible affinities with such taxa as Levnesovia transoxiana, Nanningosaurus dashiensis or Tanius sinensis, is described from the Upper Cretaceous Hekou Formation (China) by Xing et al. (2022).[128]
  • Redescription of two putative rhabdodontid braincases from the Maastrichtian of the Haţeg Basin (Romania) is published by Augustin et al. (2022), who reinterpret these specimens as hadrosauroid braincases, likely belonging to members of the species Telmatosaurus transsylvanicus.[129]
  • Review of the taxonomic status, phylogenetic relationships and biogeography of hadrosauroids known from Mexico is published by Ramírez-Velasco (2022).[130]
  • A study on the morphometric changes within the skull and dietary changes during growth of North American hadrosaurids is published by Wyenberg-Henzler, Patterson & Mallon (2022).[131]
  • A study on the beak shapes and limb segment proportions of hadrosaurids is published by Takasaki & Kobayashi (2022), who interpret their findings as indicating that lambeosaurines preferred mass consumption of low-quality food and had energy-efficient locomotion, while hadrosaurines preferred selective consumption of high-quality food and had energy-inefficient locomotor ecology.[132]
  • A study on the taphonomy and geochemical history of Brachylophosaurus canadensis specimen MOR 2598, attempting to determine the cause of protein preservation in the specimen's left femur, is published by Ullman, Ash, and Scannella (2022). [133]
  • A pathological ulna of a specimen of Amurosaurus riabinini, preserved with a hypertrophied and swollen distal region and with the distal articular surface engulfed within a large overgrowth of newly formed bone, is described from the Maastrichtian Udurchukan Formation (Amur Region, Russia) by Bertozzo et al. (2022), who interpret the bone as still healing prior to the animal's death, with the misalignment of the fracture and the resulting malunion of the two fragments of the bone probably causing the animal to limp and walk on three limbs.[134]
  • Sahaliyania elunchunorum is reinterpreted as a junior synonym of Amurosaurus riabinini by Xing et al. (2022).[135]
  • Takasaki et al. (2022) describe the first definitive specimens of Corythosaurus from the Judith River Formation (Montana, United States), extending known geographic range of this genus.[136]
  • A study on the taphonomy of a bonebed with fossils of members of the genus Gryposaurus from the lower unit of the Campanian Oldman Formation (Alberta, Canada), and on the bone microstructure of specimens from this bonebed, is published by Scott et al. (2022).[137]
  • The two smallest-known specimens of Gryposaurus notabilis are described from the Dinosaur Park Formation (Alberta, Canada) by Mallon et al. (2022), who evaluate the implications of these specimens for the knowledge of the skeletal growth of G. notabilis, and interpret them as indicating that the presence of secondary rides of the teeth in young hadrosaurines is ontogenetically transitory and not necessarily of any taxonomic significance.[138]
  • Description of the skin of a hadrosaurid specimen (probably belonging to the species Edmontosaurus annectens) from the Maastrichtian Frenchman Formation (Saskatchewan, Canada), preserving unique corrugated scales that have not been observed in this species before, is published by Libke et al. (2022).[139]
  • A study on the monodominant Edmontosaurus annectens bonebed from the Ruth Mason Dinosaur Quarry (Hell Creek Formation; South Dakota, United States), and on its implications for the knowledge of hadrosaurid growth and population dynamics, is published by Wosik & Evans (2022), who interpret their findings as indicating that E. annectens exhibited a similar growth trajectory to Maiasaura, and providing support for the hypothesized segregation between juvenile and adult hadrosaurids.[140]
  • Drumheller et al. (2022) describe soft tissue damage in the NDGS 2000 (formerly MRF-03) specimen of Edmontosaurus, consistent with injuries caused by predators or scavengers and interpreted as the first known examples of unhealed carnivore damage in dinosaurian soft tissue, and evaluate the implications of this finding for the knowledge of the fossilization pathway for soft tissues of this specimen.[141]
  • A method which can be used to determine the percent vascularity in any given CT slice of the frontoparietal is presented by Nirody et al. (2022), who use this method to study changes of vascularity in the frontoparietal dome of Stegoceras validum during its ontogeny.[142]
  • Moore et al. (2022) reconstruct the appendicular musculature of Stegoceras validum, and report evidence of adaptations of muscles for strengthening or stabilizing the pelvis and hind limbs which might have been beneficial for head- or flank-butting behaviour.[143]
  • A study on tooth replacement patterns in Yinlong downsi, Hualianceratops wucaiwanensis and Chaoyangsaurus youngi is published by Hu et al. (2022).[144]
  • The oldest umbilical scar reported to date, which is also the first umbilical scar reported to date in a non-avian dinosaur, is described in a specimen of Psittacosaurus from the Lower Cretaceous Jehol Group (China) by Bell et al. (2022).[145]
  • Description of the integument of the Frankfurt specimen of Psittacosaurus is published by Bell et al. (2022), who describe variations in the skin of the animal and discover the specimen's cloaca is crocodile-like in morphology. [146]
  • A new articulated skeleton of Yamaceratops dorngobiensis, representing the first substantially complete skeleton and the first known juvenile specimen of this taxon, is described from the Upper Cretaceous (?Santonian-Campanian) Javkhlant Formation (Mongolia) by Son et al. (2022).[147]
  • A study on the bone histology of Koreaceratops hwaseongensis is published by Baag & Lee (2022).[148]
  • Chen et al. (2022) report two skulls of Protoceratops hellenikorhinus from the Late Cretaceous Wulansuhai Formation (Alxa Right Banner, Inner Mongolia, China), expanding the known geographic range of the species, and provide a revised diagnosis of P. hellenikorhinus.[149]
  • A study on the anatomy of the postcranial skeleton of Wendiceratops pinhornensis, and on the taphonomy of the monodominant bonebed containing fossil material of this ceratopsid from the Campanian Oldman Formation in Alberta, Canada (interpreted as oldest evidence of herding behavior in a ceratopsid documented to date), is published by Scott, Ryan & Evans (2022).[150]
  • A study on the pathologies within bones of Pachyrhinosaurus perotorum from the Prince Creek Formation (Alaska, United States) is published by Fiorillo & Tykoski (2022), who find the occurrence of pathologies in the studied assemblage to be low and comparable to occurrences of pathologies in other populations of ceratopsids from the lower latitudes, and interpret this finding as indicating that hardships imposed on ceratopsids in the Arctic environment were not greater than in other environments.[151]
  • Mallon et al.(2022) redescribe two ceratopsid frills from Canada attributed to Torosaurus (representing the northernmost records of this genus reported to date), and evaluate possible implications of these specimens for determination of the status of Torosaurus as a genus distinct from Triceratops.[152]
  • A study on the fenestra perforating the right squamosal of the Triceratops horridus specimen known as Big John is published by D'Anastasio et al. (2022), who interpret this fenestra as the result of a traumatic event, possibly a fight with another Triceratops.[153]
  • De Rooij et al. (2022) present oxygen and carbon isotopic records from a large Triceratops bonebed ("Darnell Triceratops Bonebed") from the Maastrichtian Lance Formation (Wyoming, United States), and interpret these records as indicating that individuals from the "Darnell Triceratops Bonebed" lived in a transitional area between more open marsh settings and inland forests, such as fluvial systems, and casting doubts on the extent and significance of putative niche partitioning between ceratopsids and hadrosaurids, at least in this part of the Lance Formation.[154]
  • A study on the hadrosaurid and ceratopsid faunas of the Upper Cretaceous Prince Creek Formation, Cantwell Formation and Chignik Formation (Alaska, United States), and on the possible impact of the climate on differences of relative abundances of hadrosaurids and ceratopsids from these formations, is published by Fiorillo et al. (2022).[155]

Thyreophoran research edit

Saurischian research edit

  • A study on the axial skeletons of Buriolestes schultzi, Pampadromaeus barberenai and Gnathovorax cabreirai is published by Aureliano et al. (2022), who find no unambiguous evidence of postcranial pneumaticity in the studied taxa, and argue that an air sacs system permeating the skeletons was not present in the earliest dinosaurs, and evolved independently in theropods, sauropodomorphs and pterosaurs.[161]

Sauropodomorph research edit

  • A study on the shape variation of long bones in limbs of sauropodomorphs, and on its implications for the knowledge of the evolution of the sauropod bauplan, is published by Lefebvre et al. (2022).[162]
  • Review of the biological mechanisms underpinning the evolutionary transition from obligatory or facultative bipedalism to an obligatory quadrupedalism in sauropodomorphs is published by Otero & Hutchinson (2022).[163]
  • A study on the impact of climate on distribution of sauropodomorphs during their early evolutionary history is published by Dunne et al. (2022), who find that Late Triassic sauropodomorphs occupied a more restricted climatic niche space than other tetrapods (including other dinosaurs), being excluded from the hottest, low-latitude climate zones, that the expansion of sauropodomorph geographic distribution during the Early Jurassic was facilitated by climatic change and the expansion of their preferred, cooler climatic conditions, and that later in the Early Jurassic, close to the radiation of Sauropoda, they shifted to a warmer climatic niche.[164]
  • Revision and a study on the phylogenetic affinities of Carnian sauropodomorphs from South America is published by Langer et al. (2022).[165]
  • A study on the shape and variation of the anterolateral scar in the femora of Pampadromaeus barberenai and Buriolestes schultzi, and on its implications for the knowledge of the distribution of the anterolateral scar in ornithodirans, is published by Müller (2022).[166]
  • An approximately 228-million-years-old series of five cervical vertebrae of a sauropodomorph dinosaur is reported from Brazil by Damke et al. (2022), who report that the vertebrae of the studied specimen are proportionately longer than that of older forms and shorter than that of younger ones, and interpret this specimen as indicating that the elongation of the neck of sauropodomorphs was a gradual evolutionary process.[167]
  • A study on the taphonomy of the sauropodomorph fauna from the Late Triassic Los Colorados Formation (Argentina) is published by Pérez et al. (2022). [168]
  • Reconstruction of the appendicular musculature of Thecodontosaurus antiquus is presented by Ballell, Rayfield & Benton (2022).[169]
  • A new, large sized early sauropodomorph specimen is described from the Late Triassic (Carnian) Santa Maria Formation (Brazil) by Müller and Garcia (2022) [170]
  • Jannel, Salisbury & Panagiotopoulou (2022) present evidence from the study of Plateosaurus engelhardti, Rhoetosaurus brownei, Camarasaurus, Giraffatitan brancai and Diplodocus carnegii indicating that the studied sauropodomorphs would have been unable to support their weight without a soft tissue pad in the pes, and interpret their findings as indicative of the appearance of pedal soft tissue pad early in the course of the evolution of sauropod dinosaurs.[171]
  • A study on the histology of long bones of Massospondylus carinatus from multiple anatomical regions, ranging in size from embryo to adult, is published by Chapelle et al. (2022), who interpret their findings as indicative of substantial variations in growth history, and as providing no evidence for differential growth rates in forelimb and hindlimb samples from the same individual, thus refuting hypothesised ontogenetic postural shifts in Massospondylus.[172]
  • Revision of the non-gravisaurian sauropodiform taxa from South America (Mussaurus patagonicus, Leonerasaurus taquetrensis, Lessemsaurus sauropoides and Ingentia prima is published by Apaldetti & Martínez (2022).[173]
  • A study on changes occurring in the postcranial skeleton of Mussaurus patagonicus during its ontogeny is published by Otero & Pol (2022).[174]
  • A study on the bone histology and life history of Mussaurus patagonicus is published by Cerda et al. (2022).[175]
  • A study on the bone histology of Aardonyx celestae and Sefapanosaurus zatronensis is published by Botha, Choiniere & Benson (2022), who interpret their findings as indicative of rapid but seasonally interrupted growth, and indicating that highly accelerated growth rates first evolved among non-sauropod sauropodomorphs weighing 1 to 2 tons, preceding the appearance of giant sauropods.[176]
  • Evidence of widespread incompleteness of necks even in best-preserved and best-known sauropod specimens, and of widespread distortion of known sauropod cervical vertebrae, is presented by Taylor (2022).[177]
  • A study aiming to determine whether the sauropod tracks from the Kimmeridgian Courtedoux-Tchâfouè track site (Reuchenette Formation, Switzerland) all represent the same ichnogenus and whether there is variation in their morphology, using linear-based and geometric morphometrics methods, is published by Sciscio et al. (2022).[178]
  • A sample of sauropod caudal vertebrae is described from the Maastrichtian of Romania by Mocho, Pérez-García & Codrea (2022), expanding the knowledge of the diversity of the sauropods of the Hațeg Island during the Maastrichtian, and potentially providing evidence of four different tail morphologies which might belong to four sauropod taxa.[179]
  • Redescription of the anatomy of the dorsal vertebrae of Xinjiangtitan shanshanesis is published by Zhang et al. (2022).[180]
  • Fragmentary heart-shaped tooth crown of a sauropod is described from the Bathonian Jaisalmer Formation (India) by Sharma, Singh & Satheesh (2022), who interpret this specimen as the first known record of a member of Turiasauria from India.[181]
  • A study on the tail motion and speed in diplodocid sauropods is published by Conti et al. (2022), who find the speed that could be reached by diplodocid tails to be lower than the speed of sound, and find that the tail would not have withstood the stresses imposed by travelling at the speed of sound.[182]
  • Description of a nearly complete skull of a member of the genus Apatosaurus from the Upper Jurassic Morrison Formation (Como Bluff, Wyoming, United States), and a study on the tooth replacement in this specimen, is published by Peterson et al. (2022), who interpret their findings as indicative of a different tooth replacement pattern in Apatosaurus relative to Diplodocus, possibly pointing to the ecological niche partitioning among diplodocids and to Apatosaurus’ preference for a food source with tougher vegetation.[183]
  • A study on bony pathologic structures stemming from the pneumatic features in the cervical vertebrae of a diplodocine specimen from the Lower O’Hair Quarry (Morrison Formation; Montana, United States) is published by Woodruff et al. (2022), who diagnose this specimen as likely affected by an avian-like airsacculitis, constituting the first identification of this disease in a non-avian dinosaur specimen.[184]
  • A study on the histology of teeth of Diplodocus is published by Price & Whitlock (2022).[185]
  • A study on the bone histology and paleobiology of the holotype specimen of Brachytrachelopan mesai is published by Windholz et al. (2022), who interpret the holotype as a sexually immature individual, and find evidence indicative of a sustained, accelerated growth.[186]
  • New specimen of Pilmatueia faundezi, providing new information on the anatomy of the axial skeleton and the pectoral girdle of this sauropod, is described from the Valanginian Mulichinco Formation (Argentina) by Windholz et al. (2022).[187]
  • A study on the external morphology, internal microanatomy and bone microstructure of the hemispinous processes of the vertebrae from the holotype specimen of Amargasaurus cazaui and an indeterminate dicraeosaurid specimen from the La Amarga Formation (Argentina), aiming to reconstruct soft tissues associated with those processes and to determine their functional significance, is published by Cerda, Novas, Carballido and Salgado (2022).[188]
  • Evidence indicating that dicraeosaurid vertebral pneumaticity was reduced relative to other eusauropod taxa is presented by Windholz et al. (2022).[189]
  • Description of rebbachisaurid fossil material from the Cretaceous lower Huincul Formation (El Orejano locality) (Argentina) is published by Bellardini et al. (2022), who interpret the remains as likely belonging to a unique taxon, thereby increasing the diversity of rebbachisaurids in the formation.[190]
  • A study on the skeletal anatomy and affinities of Agustinia ligabuei is published by Bellardini et al. (2022), who recover Agustinia as a rebbachisaurid.[191]
  • Four sauropod ribs preserving evidence of three different pathologies (including osteosclerosis) are described from the Middle Jurassic of Yunyang (China) by Tan et al. (2022).[192]
  • Ren et al. (2022) interpret Dashanpusaurus dongi as the earliest diverging macronarian;[193] subsequently Ren et al. (2022) publish a comprehensive redescription of D. dongi.[194]
  • A study on the anatomy of the braince and inner ear of Europasaurus holgeri is published by Schade et al. (2022), who report the presence of a relatively large and morphologically adult-like endosseous labyrinth in very young individuals of Europasaurus, suggesting that hatchlings had to be light on their feet very early in their lives, and were likely precocial.[195]
  • Revision of the fossil record of non-titanosaur macronarians from South America is published by Carballido, Bellardini & Salgado (2022).[196]
  • A study on the morphology, preservation and taphonomy of the skin of Haestasaurus becklesii, and a review of sauropod skin morphology, is published by Pittman et al. (2022).[197]
  • A study on the anatomy and phylogenetic affinities of Ligabuesaurus leanzai, based on data from new postcranial elements assigned to the holotype specimen and from a newly referred specimen, is published by Bellardini et al. (2022).[198]
  • Description of teeth of a sauropod belonging to the group Somphospondyli from the Turonian Tamagawa Formation (Japan), and a study on the diet and mastication of this sauropod as inferred from tooth wear, is published by Sakaki et al. (2022).[199]
  • Description of the endocast of Phuwiangosaurus sirindhornae is published by Kaikaew et al. (2022).[200]
  • Previously unknown second cervical vertebra of Sibirotitan astrosacralis is described from the Aptian Ilek Formation (Kemerovo Oblast, Russia) by Averianov & Lopatin (2022).[201]
  • A study on the phylogenetic relationships of titanosaur sauropods is published by Carballido et al. (2022).[202]
  • A study on the morphological variability of hindlimb bones of titanosaur sauropods from the Lo Hueco Konzentrat-Lagerstätte (Villalba de la Sierra Formation, Spain) is published by Páramo et al. (2022).[203]
  • Theropod bite marks are reported on a sauropod rib from the Late Cretaceous Sāo Josè do Rio Preto Formation (Brazil) by Reis, Ghilardi, and Fernandes (2022), who interpret these marks as most likely being produced by an abelisaurid. [204]
  • Titanosaur tracks preserving claw impressions are reported from the Anacleto Formation (Argentina) by Tomaselli et al. (2022), who devise a new classification for titanosaur tracks and name the new ichnotaxon Teratopodus malarguensis.[205]
  • The first titanosaur nesting site from the Late Cretaceous of Brazil is reported from the Maastrichtian Serra da Galga Formation by Fiorelli et al. (2022).[206]
  • Description of titanosaur fossil material from the Late Cretaceous (Campanian-Maastrichtian) Mercedes Formation and Asencio Formation (Uruguay) is published by Soto et al. (2022).[207]
  • Pathological multi-shelled egg is described from a titanosaur nest from the Upper Cretaceous Lameta Formation (India) by Dhiman, Verma & Prasad (2022), who interpret this finding as possible evidence that titanosaurs had an oviductal functional morphology similar to birds.[208]
  • Review of the fossil record of titanosaur sauropods from the Campanian and Maastrichtian of South America is published by Santucci & Filippi (2022).[209]
  • Lourembam, Dhiman & Prasad (2022) report the preservation of a mineralized Membrana Testacea layer in titanosaur eggshells from a marlstone facies interbedded with the Deccan lava flows in Madhya Pradesh (India).[210]
  • A juvenile specimen of Diamantinasaurus matildae, providing information on the growth pattern of this sauropod, is described from the Upper Cretaceous Winton Formation (Australia) by Rigby et al. (2022).[211]
  • Teeth of members of Diamantinasauria, different from teeth of derived titanosaurs and more closely resembling teeth of early branching members of the titanosauriform radiation, are described from the Late Cretaceous Winton Formation (Australia) by Poropat et al. (2022), who also study the distribution of sauropod tooth morphotypes before and after deposition of the Winton Formation, and argue that a substantial sauropod turnover took place during the Cretaceous, with diverse Berriasian faunas encompassing a range of tooth morphologies being replaced by faunas comprising solely titanosaurs with limited dental variability by the end-Turonian.[212]
  • A mechanical analysis of Savannasaurus elliottorum is performed by Preuschoft (2022).[213]
  • A review of sauropod fossil material from the Kallamedu Formation, including bones of the giant enigmatic titanosaur Bruhathkayosaurus, is published by Pal & Ayyasami (2022).[214]
  • A reconstruction of the articular cartilage of the left elbow joint of Dreadnoughtus schrani is presented by Voegele et al. (2022).[215]
  • A study on the taphonomy and molecular preservation of the holotype of Dreadnoughtus schrani is published by Schroeter et al. (2022).[216]
  • Silva Junior et al. (2022) describe new fossil material of Baurutitan britoi from the Upper Cretaceous Serra da Galga Formation (Brazil), and interpret Trigonosaurus pricei as a junior synonym of B. britoi.[56]
  • A study on the anatomy of the appendicular skeleton and on the affinities of Rinconsaurus caudamirus is published by Pérez Moreno et al. (2022).[217]
  • A study on the microstructure of axial bones of Austroposeidon magnificus, Gondwanatitan faustoi and Maxakalisaurus topai, and on its implications for the knowledge of growth phases of these sauropods, is published by Brum et al. (2022).[218]
  • Curved, pencil-like sauropod teeth from the Upper Cretaceous Bostobe Formation (Kazakhstan) are referred to a representative of the clade Opisthocoelicaudiidae by Averianov & Lopatin (2022).[219]
  • A study proposing a method to determine the gait and limb phase of sauropods based on fossil tracksites is published by Lallensack & Falkingham (2022), who interpret their findings as suggestive of diagonal couplet walks, which would have allowed both sides of the body to be supported by the limbs at all times.[220]
  • Revision of the fossil record of sauropodomorph eggs, nests and embryos from South America is published by Fernández, Vila & Moreno-Azanza (2022).[221]
  • Keller & Or (2022) hypothesize that sauropods must have compacted the subsoil during their locomotion, presenting a paradox for productivity of the land that supported them.[222]

Theropod research edit

  • Review of the morphology and distribution of non-feather integumentary structures in non-avialan theropods is published by Hendrickx et al. (2022).[223]
  • A study on the abundance of large theropods from the Upper Jurassic Morrison Formation and Upper Cretaceous Dinosaur Park Formation in terms of population density and relative to the abundance of the megaherbivorous dinosaurs is published by Farlow et al. (2022), who interpret their findings as indicating that large theropods may have been more abundant on the landscape than inferred from extrapolations from the relationship between population density and body size in modern mammalian predators.[224]
  • Description of a small high-density assemblage of theropod tracks from the Cretaceous Haman Formation (South Korea), and a study on the distribution of grallatorid tracks in east Asia, is published by Lockley et al. (2022).[225]
  • Trackway produced by a large theropod, probably affected by a foot pathology, is described from the upper Barremian locality of Las Hoyas (La Huérguina Formation, Spain) by Herrera-Castillo et al. (2022).[226]
  • Revision of the fossil material of theropods from the Middle to Late Jurassic of the Vaches Noires cliffs (Normandy, France) is published by Monvoisin et al. (2022).[227]
  • An isolated theropod tooth, possibly belonging to a member of Allosauroidea, Tyrannosauroidea and/or Megaraptora, is reported from the HauterivianBarremian Itsuki Formation (Japan) by Ueda et al. (2022).[228]
  • Revision of theropod teeth from the Campanian site of Laño (Spain), evaluating their implications for the knowledge of diversity and evolutionary history of theropods from the Late Cretaceous of Europe, is published by Isasmendi et al. (2022).[229]
  • Davis et al. (2022) describe fossil material of theropods (both non-avian and avian) from the Upper Cretaceous (Campanian-Maastrichtian) deposits from a high paleolatitude (>60° S) Río de las Chinas Valley site (Magallanes-Austral Basin, Chile), representing the first record of theropods from Chilean Patagonia, and including the southernmost (outside of Antarctica) known occurrences of theropod clades such as megaraptorids, unenlagiines, enantiornithines and ornithurines.[230]
  • A study aiming to determine the causes of the shortening of the forelimbs of giant theropods, especially tyrannosaurids, is published by Padian (2022).[231]
  • A study on the bone histology and life history of specimens of Coelophysis bauri from the bonebed from Ghost Ranch (New Mexico, United States) is published by Barta, Griffin & Norell (2022), who interpret their findings as indicative of a high degree of variation in growth trajectories among specimens belonging to this species.[232]
  • Caudal vertebra of a theropod is described from the Aliança Formation (Brazil) by De Oliveira, Oliveira & Fambrini (2022), who consider the studied specimen to be a basal neotheropod, and interpret this finding as likely evidence of the survival of basal neotheropods into the Middle-Late Jurassic in Gondwana.[233]
  • The first definitive fossil (a vertebra) of an abelisaurid from the Upper Cretaceous Bahariya Formation (Egypt) is described by Salem et al. (2022).[234]
  • A small abelisaurid caudal vertebra is described from the Upper Cretaceous Presidente Prudente Formation (Brazil) by Delcourt & Langer (2022), who interpret this vertebra as belonging to an adult animal, representing one of the smallest known abelisaurids.[235]
  • Description of the anatomy of the appendicular skeleton of Skorpiovenator bustingorryi is published by Cerroni et al. (2022).[236]
  • Gianechini et al. (2022) describe an isolated caudal vertebra of an abelisaurid theropod from the Santonian Bajo de la Carpa Formation (Argentina), with anatomy indicative of affinities with older, Cenomanian and Turonian non-furileusaurian taxa, and indicating that the turnover of abelisaurid forms, with furileusaurias replacing basal brachyrostrans, occurred after the Turonian.[237]
  • A study on the bone histology of the type specimen of Aucasaurus garridoi is published by Baiano & Cerda (2022).[238]
  • An analysis of the possible aquatic habits of members of Spinosauridae, as well as other non-avian dinosaurs, is published by Fabbri et al. (2022), who determine that a high bone density would have allowed for underwater foraging in Spinosaurus and Baryonyx, while Suchomimus was likely better suited for terrestrial wading, despite morphological similarities to Baryonyx.[239]
  • Isasmendi et al. (2022) reinterpret a fragment of a maxilla from the Lower Cretaceous of La Rioja (Spain), previously assigned to Baryonyx, as likely belonging to an indeterminate baryonychine closer to Baryonyx than to Suchomimus.[240]
  • Postcranial material of a giant spinosaurid, which was likely one of the largest European theropods reported to date, is described from the Lower Cretaceous Vectis Formation (United Kingdom) by Barker et al. (2022).[241]
  • Sereno et al. (2022) interpret the anatomy of the skeleton of Spinosaurus aegyptiacus as indicating that this theropod was incapable of diving and unstable in deeper water, report the discovery of fossils of members of the genus Spinosaurus in the Cenomanian Echkar Formation (Niger) buried in fluvial overbank deposits far from a marine coastline, and interpret Spinosaurus as a semiaquatic shoreline ambush predator.[242]
  • A study comapring dental microwear texture of Allosaurus and tyrannosaurid theropods is published by Winkler et al. (2022), who confirm that younger theropods occupied different dietary niches to adult individuals, but don't find evidence indicating that tyrannosaurids consumed bones more frequently than Allosaurus.[243]
  • Paterna & Cau (2022) describe new carcharodontosaurid cranial material from the Kem Kem Group (Morocco), including one partial maxilla with a morphology distinct from that of Carcharodontosaurus saharicus, with a body size as comparable to the largest carcharodontosaurids, argue that Sauroniops pachytholus is distinct from Carcharodontosaurus, and interpret their findings as supporting the presence of more than one giant carcharodontosaurid species in the Cenomanian of Morocco.[244]
  • A detailed description, comparison, and analysis of the tyrannosauroid Eotyrannus from the Wessex Formation is published by Naish & Cau (2022).[245]
  • Redescription of the first theropod tooth discovered in Australia (probably from the Griman Creek Formation) is published by Kotevski and Poropat (2022), who interpret the tooth as belonging to a member of Megaraptoridae.[246]
  • Description of five theropod teeth assignable to three different families (Troodontidae, Dromaeosauridae, and Tyrannosauridae) from the Early Campanian Nenjiang Formation (China) is published by Yu et al. (2022) [247]
  • New theropod teeth, identified as teeth of dromaeosaurids and non-tyrannosaurid tyrannosauroids, are described from the Barremian site of Vadillos-1 (Cuenca Province, Spain) by Berrocal-Casero et al. (2022).[248]
  • Partial tyrannosauroid femur, morphologically similar to the femur of Moros intrepidus but not referable to this taxon, is described from the Albian–Cenomanian Wayan Formation (Idaho, United States) by Krumenacker, Zanno & Sues (2022), who interpret this finding as evidence of the presence of a previously unrecognized tyrannosauroid in the early Late Cretaceous of Laramidia.[249]
  • Evidence from the skeleton of Gorgosaurus libratus, interpreted as indicating that the specialized arctometatarsus of tyrannosaurid theropods was strengthened by distinctive and specific ligaments unknown in other theropods, is presented by Surring et al. (2022).[250]
  • Two juvenile specimens of Gorgosaurus libratus, providing new information on the anatomy and ontogeny of this taxon and tyrannosaurids in general, are described from the Late Cretaceous Dinosaur Park Formation (Alberta, Canada) by Voris et al. (2022).[251]
  • Description of the frontal anatomy of Teratophoneus curriei is published by Yun (2022).[252]
  • A study on the anatomy of the skull of Qianzhousaurus sinensis is published by Foster et al. (2022).[253]
  • Kim et al. (2022) compare a fish centrum found with the holotype of Raptorex kriegsteini with Harenaichthys lui from the Nemegt Formation (Mongolia) and Chinese Xixiaichthys tongxinensis, and interpret their findings as supporting the conclusion that the holotype of R. kriegsteini comes from the Nemegt Formation.[254]
  • A study on growth changes in the frontal bones of Tarbosaurus bataar is published by Yun, Peters & Currie (2022).[255]
  • Description of the neurovascular canals in rostral cranial elements of Tyrannosaurus rex, and a study on the evolution of these canals among Sauropsida and on the possibility of the presence of lips and specialised sensory organs among non-avian theropods, is published by Bouabdellah, Lessner & Benoit (2022).[256]
  • A study refuting the claim that infection caused madibular pathologies in Tyrannosaurus is published by Rothschild, O'Connor, and Lozado (2022), who interpret the pathologies as instead being caused by intraspecific interactions.[257]
  • Tsogtbaatar et al. (2022) describe fossils of two members of Ornithomimosauria of different body sizes from the Santonian Eutaw Formation (Mississippi, United States), including fossil material of one of the largest members of Ornithomimosaurian known worldwide.[258]
  • An ornithomimosaurian pelvis and sacrum is described from the Upper Cretaceous Erlian Formation (China) by Xi et al. (2022), who interpret this fossil material as likely belonging to a member of Ornithomimosauria distinct from Archaeornithomimus asiaticus, probably representing an early-diverging group within Ornithomimosauria.[259]
  • A pathologic metatarsal of a large-bodied ornithomimid, likely affected by traumatic impact fracture with subsequent chronic osteomyelitis, is described from the Santonian (Eutaw Formation) (Mississippi, United States) by Chinzorig et al. (2022), who evaluate the implications of the studied specimen for the knowledge of the criteria which can be used to properly distinguish between medullary bone and pathological endosteal bone in archosaur fossils.[260]
  • The first diagnostic ornithomimid fossils from the upper Maastrichtian Scollard Formation (Alberta, Canada) are described by Nottrodt (2022), extending the stratigraphic ranges of both Ornithomimus and Struthiomimus in Alberta from the upper Campanian Dinosaur Park Formation through to the Scollard Formation, which constitutes more than 10 million years of time.[261]
  • A study on the forelimbs of the Alvarezsauroidea using evolutionary teratology is published by Guinard (2022). [262]
  • Redescription of Parvicursor remotus is published by Averianov & Lopatin (2022), who reinterpret the holotype of this genus as a juvenile and consider Linhenykus monodactylus and Ceratonykus oculatus to be synonymous with it.[263]
  • A study on the jaw adductor musculature and bite force of members of Oviraptorosauria is published by Meade & Ma (2022).[264]
  • Review of the knowledge of the reproductive biology of the Late Cretaceous oviraptorosaurs is published by Yang & Sander (2022).[265]
  • A study aiming to determine how the developmental stage of well-preserved oviraptorosaur embryos can be estimated is published by Deeming & Kundrát (2022), who argue that known articulated oviraptorosaur embryos, including the oviraptorid specimen from the Hekou Formation (China) described by Xing et al. (2021),[266] were not close to hatching.[267]
  • Averianov & Lopatin (2022) report the discovery of fossil material of a member of the genus Avimimus from the Santonian Ialovachsk Formation (Tajikistan), representing the first record of an avimimid oviraptorosaur from Central Asia reported to date.[268]
  • A subadult oviraptorid specimen interpreted as the first non-hatchling specimen of Yulong mini reported to date is described from the Upper Cretaceous Qiupa Formation (China) by Wei et al. (2022).[269]
  • Serrano-Brañas et al. (2022) describe the first caenagnathid material from the Upper Cretaceous Cerro del Pueblo Formation (Mexico), representing the southernmost Laramidian record of caenagnathids reported to date.[270]
  • A study on the evolution of the skull morphology of non-avialan paravian theropods is published by Pei & Xu (2022).[271]
  • A dromaeosaurid-like sickle claw, similar in some ways to Pyroraptor olympius, is reported from the Grès à Reptiles Formation (France) by Brilhante et al. (2022).[272]
  • Sues, Averianov & Britt (2022) describe a pedal phalanx of a dromaeosaurid theropod from the Turonian Bissekty Formation (Uzbekistan), and estimate that the studied dromaeosaurid attained a larger body size than any previously known member of that clade.[273]
  • Hone et al. (2022) report the presence of the remains of a small fossil mammal foot inside the body cavity of the holotype of Microraptor zhaoianus, indicating that the diet of this theropod included mammals.[274]
  • A study on the phylogenetic relationships of members of Eudromaeosauria is published by Powers et al. (2022), who interpret Acheroraptor temertyorum and Atrociraptor marshalli as members of the Saurornitholestinae.[275]
  • A study on the skeletal anatomy and affinities of Dineobellator notohesperus is published by Jasinski et al (2022).[276]
  • Letizio, Bertini, & Medeiros (2022) describe unenlagiine teeth from a tooth assemblage in the Late Cretaceous (AlbianCenomanian) Alcântara Formation (São Luís-Grajaú Basin), of Maranhão, Brazil, and determine that Unenlagiinae had a wider chronological and geographical distribution than was previously thought.[277]
  • Yu et al. (2022) describe a troodontid tooth from the Upper Cretaceous Yuliangze Formation (Heilongjiang, China), expanding known geographic range of the Troodon tooth morphotype.[278]
  • New theropod assemblage, including the first records of a large carcharodontosaur allosauroid and of a troodontid maniraptoran in Appalachia reported to date, as well as the earliest occurrence of a tyrannosauroid in Appalachia reported to date, is described from the Cenomanian Lewisville Formation (Woodbine Group; Texas, United States) by Noto et al. (2022).[279]

Birds edit

New bird taxa edit

Name Novelty Status Authors Age Type locality Country Notes Images

Aegotheles zealandivetus[280]

Sp. nov

Valid

Worthy et al.

Early Miocene

Bannockburn Formation

  New Zealand

An owlet-nightjar; a species of Aegotheles.

Alhuenia[281]

Gen. et sp. nov

Valid

Agnolín

Early-Middle Miocene

Pinturas Formation

  Argentina

A member of Parvigruidae. The type species is A. eduardotonnii.

Allgoviachen[282]

Gen. et sp. nov

In press

Mayr, Lechner & Böhme

Miocene (Tortonian)

  Germany

A member of the family Anatidae. The type species is A. tortonica.

Annakacygna[283]

Gen. et 2 sp. nov

Valid

Matsuoka & Hasegawa

Miocene

Haraichi Formation

  Japan

A member of the family Anatidae belonging to the tribe Cygnini. The type species is A. hajimei; genus also includes A. yoshiiensis.

Archaeopsophia[281]

Gen. et sp. nov

Valid

Agnolín

Early-Middle Miocene

Santa Cruz Formation

  Argentina

A member of Psophiidae. The type species is A. aoni.

Beiguornis[284]

Gen. et sp. nov Valid Wang et al. Early Cretaceous Longjiang Formation   China A member of Enantiornithes. The type species is B. khinganensis.

Caroohierax[281]

Gen. et sp. nov

Valid

Agnolín

Early-Middle Miocene

Pinturas Formation

  Argentina

A member of Falconidae. The type species is C. rapoporti.

Centuriavis[285]

Gen. et sp. nov

Valid

Ksepka et al.

Miocene

Ash Hollow Formation

  United States
(  Nebraska)

A member of the family Phasianidae, interpreted by the authors of its description as diverging prior to the grouse-turkey split. Genus includes new species C. lioae.

Chainkanas[281]

Gen. et sp. nov

Valid

Agnolín

Early-Middle Miocene

Pinturas Formation

  Argentina

A screamer. The type species is C. koshon.

Chehuenia[281]

Gen. et sp. nov

Valid

Agnolín

Early-Middle Miocene

Santa Cruz Formation

  Argentina

Originally described as a roller; Mayr & Kitchener (2024) argued that it cannot be assigned to this group.[286] The type species is C. facongrandei.

Confuciusornis shifan[287]

Sp. nov

Valid

Wang et al.

Early Cretaceous

Jiufotang Formation

  China

 

Cryptogyps[288]

Gen. et comb. nov

Valid

Mather, Lee, & Worthy

Mid-Late Pleistocene

Katipiri Formation

  Australia

A member of Accipitridae; a new genus for "Taphaetus" lacertosus.

Danielsraptor[289]

Gen. et sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

  United Kingdom

A masillaraptorid stem-falconiform. The type species is D. phorusrhacoides.

Dryornis hatcheri[290]

Sp. nov

Valid

Degrange

Miocene

Santa Cruz Formation

  Argentina

A member of Cathartidae; a species of Dryornis.

Enskenia[281]

Gen. et sp. nov

Valid

Agnolín

Early-Middle Miocene

Pinturas Formation

  Argentina

A member of Strigiformes. The type species is E. galeanoi.

Geokichla longitarsus[291]

Sp. nov

Valid

Hume

  Mauritius

A ground thrush, a species of Geokichla.

Gypaetus georgii[292]

Sp. nov

Valid

Sánchez-Marco

Late Miocene

  Spain

A vulture; a species of Gypaetus (bearded vulture).

Janavis[293]

Gen. et sp. nov

Valid

Benito et al.

Late Cretaceous (Maastrichtian)

Maastricht Formation

  Belgium

A toothed ornithurine bird, similar to Ichthyornis in its overall morphology, but bearing a pterygoid similar to those of extant members of Galloanserae. The type species is J. finalidens.

Kaikenia[281]

Gen. et sp. nov

Valid

Agnolín

Early-Middle Miocene

Santa Cruz Formation

  Argentina

A member of Tadorninae. The type species is K. mourerchauvirea.

Lutavis[294]

Gen. et sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

  United Kingdom

Possibly a member of Afroaves. The type species is L. platypelvis.

Mininothura[281]

Gen. et sp. nov

Valid

Agnolín

Early-Middle Miocene

Pinturas Formation

  Argentina

A member of Tinamidae. The type species is M. talenki.

Minutornis[295]

Gen. et sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

  United Kingdom

A small zygodactylid-like bird, a member of Parapasseres of uncertain affinities. The type species is M. primoscenoides.

 

Miosurnia[296]

Gen. et sp. nov

Li, Stidham & Zhou in Li et al.

Late Miocene

Liushu Formation

  China

A true owl belonging to the clade Surniini. The type species is M. diurna.

Miotadorna catrionae[297]

Sp. nov

Valid

Tennyson et al.

Miocene (Altonian)

Bannockburn Formation

  New Zealand

A member of the family Anatidae belonging to the subfamily Tadorninae.

Musivavis[298]

Gen. et sp. nov

Valid

Wang et al.

Early Cretaceous (Aptian)

Jiufotang Formation

  China

A member of Enantiornithes. The type species is M. amabilis.

Nasidytes[299]

Gen. et sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

  United Kingdom

A stem-gaviiform. Genus includes new species N. ypresianus.

Neophron lolis[292]

Sp. nov

Valid

Sánchez-Marco

Late Miocene

  Spain

A vulture; a species of Neophron (Egyptian vulture).

Notochen[300]

Gen. et sp. nov

Valid

Worthy et al.

Early Miocene

Bannockburn Formation

  New Zealand

A large anserine-like anatid. The type species is N. bannockburnensis.

Patagogrus[281]

Gen. et sp. nov

Valid

Agnolín

Early-Middle Miocene

Pinturas Formation

  Argentina

A member of Gruidae. The type species is P. olsoni.

Peioa[281]

Gen. et sp. nov

Valid

Agnolín

Early-Middle Miocene

Santa Cruz Formation

  Argentina

A member of Anseriformes. The type species is P. australis.

Plesiocathartes insolitipes[294]

Sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

  United Kingdom

A member of Leptosomiformes.

Pliogallus csarnotanus[301]

Sp. nov

Valid

Kessler & Horváth

Pliocene

  Hungary

A member of the family Phasianidae.

Primoscens carolinae[295]

Sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

  United Kingdom

A member of the family Zygodactylidae.

Psittacomimus[295]

Gen. et sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

  United Kingdom

A member of the family Psittacopedidae. The type species is P. eos.

 

?Psittacopes occidentalis[295]

Sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

  United Kingdom

A member of the family Psittacopedidae.

Spatula praeclypeata[302]

Sp. nov

Valid

Zelenkov

Early Pleistocene

Crimean Peninsula

An anatid belonging to the genus Spatula.

Tamtamia[281]

Gen. et sp. nov

Valid

Agnolín

Early-Middle Miocene

Pinturas Formation

  Argentina

A member of Tadorninae. The type species is T. yzurietai.

Thegornis spivacowi[281]

Sp. nov

Valid

Agnolín

Early-Middle Miocene

Pinturas Formation

  Argentina

A member of Herpetotheriinae; a species of Thegornis.

Waltonavis[294]

Gen. et 2 sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

  United Kingdom

A small leptosomiform-like bird. The type species is W. paraleptosomus; genus also includes W. danielsi.

 
Yatenavis[303] Gen. et sp. nov In press Herrera et al. Late Cretaceous (Maastrichtian) Chorrillo Formation   Argentina A member of Enantiornithes. The type species is Y. ieujensis.

Ypresiglaux[304]

Gen. et sp. et comb. nov

Valid

Mayr & Kitchener

Early Eocene

London Clay

  United Kingdom
  United States
(  Virginia)

An owl. The type species is Y. michaeldanielsi; genus also includes "Eostrix" gulottai Mayr (2016). Announced in 2022; the final article version was published in 2023.

 

Zealandornis[280]

Gen. et sp. nov

Valid

Worthy et al.

Early Miocene

Bannockburn Formation

  New Zealand

A bird with morphology most similar to that of mousebirds, assigned to the new family Zealandornithidae of uncertain affinities but likely belonging to Telluraves. The type species is Z. relictus.

 

Avian research edit

  • Evidence indicating that the development of the pelvis of bird embryos parallels the evolution of the pelvis during the non-avian dinosaur-to-bird transition is presented by Griffin et al. (2022).[305]
  • A study aiming to determine whether the flapping flight of birds evolved through the stage of wing-assisted incline running is published by Kuznetsov & Panyutina (2022);[306] their conclusions are subsequently contested by Heers et al. (2022).[307]
  • A study on the skull anatomy of a well-preserved new specimen of Jeholornis, and on the morphometrics of the mandible and cranium of Jeholornis is published by Hu et al. (2022), who interpret their findings as indicating that Jeholornis consumed fruits, and raising the possibility of seed dispersal by early birds.[308]
  • Description of the cranial osteology of Jeholornis prima, providing evidence of sensory adaptation (including relatively large olfactory bulbs) and adaptation to diurnal habit, is published by Hu et al. (2022).[309]
  • A study on the skeletal morphometrics of a sample of specimens of Confuciusornis sanctus is published by Marugán-Lobón & Chiappe (2022), who interpret their findings as indicating that the polyphasic life cycle of C. sanctus was different from the life cycle of modern birds, and possibly indicative of change of food resources foraged by this bird during its ontogeny.[310]
  • Evidence of calcium phosphate composition and the presence of phosphatized corneocytes in a foot claw sheath of a specimen of Confuciusornis sanctus is presented by He et al. (2022).[311]
  • Wang et al. (2022) reconstruct the pectoral girdles of Sapeornis and Piscivorenantiornis.[312]
  • Chiappe et al. (2022) describe a partial braincase of a member of Enantiornithes from the Upper Cretaceous Adamantina Formation (Brazil), and interpret its anatomy as indicating that some endocranial traits previously considered to be unique to members of Neornithes (an expanded, flexed brain, a ventral connection between the brain and spinal column, modified vestibular system) were also present in at least some members of Enantiornithes.[313]
  • A study on the diet of members of the family Longipterygidae is published by Miller et al. (2022).[314]
  • Wang et al. (2022) present a three-dimensional reconstruction of the skull of Yuanchuavis kompsosoura, providing evidence of the presence of a mixture of plesiomorphic temporal and palatal regions and derived facial anatomies.[315]
  • A study on the morphology of the scutellate and interstitial scales of a specimen of Gansus yumenensis from the Lower Cretaceous Xiagou Formation (China) is published by Zhao et al. (2022), who interpret this finding as indicating that all four types of scales present in modern birds were already present in Early Cretaceous birds, and that avian scales are likely homologous with scales of non-avian dinosaurs.[316]
  • Review of the general anatomy, taxonomy, phylogeny, evolutionary trends and paleoecology of hesperornithiforms is published by Bell & Chiappe (2022).[317]
  • New information on the anatomy of the postcranial skeleton of Ichthyornis, based on data from 40 previously undescribed specimens, is presented by Benito et al. (2022).[318]
  • Review of the palaeognath fossil record is published by Widrig & Field (2022).[319]
  • A study on the stratigraphic provenance of Psammornis eggshells (probably produced by giant ostriches), and on their implications for the knowledge of the evolutionary history of struthionids, is published by Buffetaut (2022).[320]
  • Demarchi et al. (2022) report the recovery of mineral-bound peptide sequences from an ostrich eggshell sample from the Miocene Liushu Formation (Linxia Basin, Gansu, China).[321]
  • Revision of the type material of Struthio asiaticus is published by Buffetaut (2022), who interprets the type material as likely coming from the Siwaliks of present-day India, considers S. asiaticus to be about as tall as a living male African ostrich but probably more robustly built, as does not consider reports of S. asiaticus outside the Indian subcontinent to be based on convincing evidence.[322]
  • Putative tibiotarsus and a second limb bone of Diogenornis from the Sarmiento Formation (Argentina) are reevaluated by Acosta Hospitaleche & Picasso (2022), who interpret the tibiotarsus as belonging to an indeterminate palaeognath and the second limb bone to as belonging to a penguin, indicating that the presence of Diogenornis outside of Brazil cannot be confirmed.[323]
  • An overview and update of the rhea fossil record from South America and Antarctica is published by Picasso, Acosta Hospitaleche & Mosto (2022).[324]
  • Partial tarsometatarsus of a neognath bird from the Eocene Na Duong Formation (Vietnam) is published by Massonne, Böhme & Mayr (2022).[325]
  • A study on the taxonomic identity of the extinct giant bird that produced eggs known from eggshell fragments from Pleistocene sites in Australia, some of which bear signs of cooking during a narrow temporal window 50 ± 5 ka B.P., is published by Demarchi et al. (2022), who interpret their findings as supporting the attribution of the studied eggshells to Genyornis.[326]
  • A study on the histology of long bones and life history of Dromornis stirtoni is published by Chinsamy, Handley & Worthy (2022).[327]
  • A study on the relationships between the shape and size of extant waterfowl tarsometatarsi and their locomotory habits, and on their implications for the knowledge of the locomotory habits of Cayaoa and Paranyroca, is published by De Mendoza & Gómez (2022).[328]
  • A study on the morphological variation of the postcranial skeletons of the Malagasy shelduck, and on its implications for the knowledge of the biology of this species, is published by Nomenjanahary et al. (2022).[329]
  • Partial coracoid of a member of the genus Chloephaga is described from the Upper Pleistocene Toropí/Yupoí Formation at Arroyo Toropí (Corrientes Province, Argentina) by Álvarez-Herrera et al. (2022), representing the northernmost record of the genus reported to date.[330]
  • A study on the neuroanatomy of Sylviornis neocaledoniae is published by Riamon et al. (2022), who interpret their findings as indicative of adaptation of this bird to crepuscular lifestyle.[331]
  • Fossil material of a flamingo morphologically similar to the modern genera Phoenicopterus and Phoenicoparrus is reported from the Hemingfordian of Southern California (United States) by McDonald & Steadman (2022), extending the chronological range of modern flamingos.[332]
  • Fossil material of buttonquails is described from the latest Oligocene and late early to middle Miocene of France by De Pietri et al. (2022), bridging the large temporal gap in the fossil record of this group from the early Oligocene to the late Miocene.[333]
  • Description of a partial humerus belonging to an auk from the Pliocene Fukagawa Group (Japan) is published by Aotsuka & Endo (2022).[334]
  • A review of the evolutionary and biogeographic history of penguins is published by Pelegrín & Acosta Hospitaleche (2022).[335]
  • A study on the comparative anatomy of the synsacral canal in extant and fossil penguins is published by Jadwiszczak, Svensson-Marcial & Mörs (2022).[336]
  • Description of a new partial fossil sternum belonging to a member of Procellariidae from the Middle Pleistocene Ichijiku Formation (Japan) is published by Aotsuka, Isaji & Endo (2022).[337]
  • New fossil material of Leptoptilos robustus is described from Flores (Indonesia) by Meijer et al. (2022), who interpret their findings as indicating that L. robustus was almost certainly capable of active flight and that it was similar in overall size and morphology to Leptoptilos falconeri, and potentially indicating that L. falconeri, L. robustus, Leptoptilos titan and Leptoptilos lüi represent either a single giant stork species or a group of very closely related species that stretched across Africa and Eurasia from the Pliocene until the Late Pleistocene.[338]
  • A study on the evolutionary history of Coragyps occidentalis, based on data from the genome of a 14,000-year-old specimen from the Casa del Diablo cave (Peru), is published by Ericson et al. (2022).[339]
  • Description of a large condor from the Late Pleistocene Luján Formation (Argentina) is published by Agnolín, Brissón Egli & Álvarez–Herrera (2022).[340]
  • Studies on evolutionary stasis in red-tailed hawks, Swainson's hawks, Spizaetus grinnelli, Neophrontops americanus, northern harriers, Buteogallus fragilis and ferruginous hawks from the La Brea Tar Pits across the Last Glacial Maximum are published by Balassa, Prothero & Syverson (2022),[341] Cleaveland, Prothero & Syverson (2022),[342] DeAnda, Prothero & Marriott (2022),[343] Olson et al. (2022).[344] Marriott, Prothero & Watmore (2022),[345] Santos, Prothero & Marriott (2022),[346] and Watmore & Prothero (2022),[347] respectively.
  • A nearly complete skeleton referred to the genus Buteo is described from the late Miocene of Roddi, Italy by Pavia et al. (2022).[348]
  • A partial humerus referred to Buteo spassovi is described by Boev (2022).[349]
  • A new partial pedal phalanx of a large, recently extinct barn-owl is described from the Holocene of Guadeloupe by Gala, Laroulandie & Lenoble (2022).[350]
  • An atlas of a great grey owl is described from the Pleistocene of the Devetashka Cave (Bulgaria) by Boev & Mikkola (2022).[351]
  • A study on the comparative anatomy of the passerine carpometacarpus, with implications for assessing the phylogenetic affinities of fossil passerines, is published by Steell et al. (2022).[352]
  • Revision of the fossil material of birds from Cooper's D locality (South Africa) is published by Pavia et al. (2022).[353]
  • Description of an assemblage of fossil birds from the Middle Pleistocene of Galería, Spain is published by Núñez-Lahuerta et al. (2022).[354]
  • Description of the fossil material of birds from the Magdalenian of El Juyo, Spain is published by Rufà et al. (2022).[355]
  • Description of the fossil material of birds from the Dieu and Maxa I Caves in Vietnam is published by Boev (2022).[356]
  • A catalogue of fossil and subfossil birds from Cuba is published by Suárez (2022).[357]
  • A study on the effect of past climate oscillations in the Western Palearctic and Africa on the distribution of the grey partridge, the common quail, the corn crake, the little owl, the snowy owl and the Alpine chough is published by Carrera, Pavia & Varela (2022).[358]
  • A study on plant material from rock overhangs from mid-late Holocene sites along the Kawarau-Cromwell-Roxburgh Gorges in Central Otago (New Zealand), much of which was likely transported as roosting material or consumed by moa birds, and on its implications for the knowledge of moa diet and ecology (including the first known evidence of the consumption of kōwhai by moa birds), is published by Pole (2022).[359]
  • Evidence from ancient mitochondrial genomes indicative of increase in the population size and genetic diversity of eastern moa after the Last Glacial Maximum, as well as indicative of higher genetic diversity in eastern moa from the southern extent of their range, is presented by Verry, Mitchell & Rawlence (2022), who interpret their findings as indicating that eastern moa expanded from a single glacial refugium following the Last Glacial Maximum.[360]
  • A study on the bone histology of extant and extinct large terrestrial birds, aiming to determine whether bone microanatomy can be used to infer the locomotion mode of large terrestrial birds, is published by Canoville, Chinsamy & Angst (2022).[361]

Pterosaurs edit

New pterosaur taxa edit

Name Novelty Status Authors Age Type locality Country Notes Images

Cascocauda[362]

Gen. et sp. nov

Valid

Yang et al.

MiddleLate Jurassic (CallovianOxfordian)

Tiaojishan Formation

  China

An anurognathid. The type species is C. rong.

Dearc[363]

Gen. et sp. nov

Valid

Jagielska et al.

Middle Jurassic (Bathonian)

Lealt Shale Formation

  United Kingdom
(  Scotland)

A large (2.5 metre wingspan) rhamphorhynchine pterosaur. Genus includes new species D. sgiathanach.

Epapatelo[364]

Gen. et sp. nov

Valid

Fernandes et al.

Late Cretaceous (Maastrichtian)

Mucuio Formation

  Angola

A member of Pteranodontia. The type species is E. otyikokolo.

Lingyuanopterus[365]

Gen. et sp. nov

Valid

Xu, Jiang & Wang

Early Cretaceous (Aptian)

Jiufotang Formation

  China

An istiodactylid. The type species is L. camposi.

 

Pachagnathus[366]

Gen. et sp. nov

Valid

Martínez et al.

Late Triassic
(Norian)

Quebrada del Barro Formation

  Argentina

A raeticodactylid pterosaur.
The type species is P. benitoi.

Thanatosdrakon[367]

Gen. et sp. nov

Valid

Ortiz David, González Riga & Kellner

Late Cretaceous (ConiacianSantonian)

Plottier Formation

  Argentina

An azhdarchid. The type species is T. amaru.

 

Yelaphomte[366]

Gen. et sp. nov

Valid

Martínez et al.

Late Triassic
(Norian)

Quebrada del Barro Formation

  Argentina

A raeticodactylid pterosaur.
The type species is Y. praderioi.

Pterosaur research edit

  • Description of the skeletal anatomy of Dimorphodon macronyx is published by Sangster (2022).[368]
  • A study comparing cranial and dental morphology of anurognathid pterosaurs and extant birds and bats is published by Clark & Hone (2022), who find anurognathids to occupy similar morphospaces as extant crepuscular and nocturnal insectivores.[369]
  • A study reinterpreting the orbital, antorbital and narial fenestrae in the skulls of the anurognathid pterosaurs, based mainly on data from the skulls of specimens of Batrachognathus volans, and aiming to determine the phylogenetic affinities of anurognathids is published by Dalla Vecchia (2022).[370]
  • Two specimens of Kunpengopterus sinensis preserved with bromalites are described from the Jurassic Tiaojishan Formation (China) by Jiang et al. (2022), who interpret the bromalites as fossilized gastric pellets, and evaluate their implications for the knowledge of the diet and the digestive system of this pterosaur.[371]
  • Augustin et al. (2022) describe a specimen of Pterodactylus antiquus from the Upper Jurassic (Kimmeridgian) Torleite Formation (Germany), representing the oldest record of this species reported to date.[372]
  • A new ctenochasmatid assemblage from the Early Cretaceous Quebrada Monardes Formation (Chile) is reported by Alarcón et al. (2022).[373]
  • Redescription of the holotype specimen of Moganopterus zhuiana is published by Gao et al. (2022).[374]
  • A study on the soft tissues and on the feasibility of the water launch in an aurorazhdarchid specimen from the Late Jurassic Solnhofen Lagoon is published by Pittman et al. (2022).[375]
  • New fossil material of Bogolubovia orientalis is described from the Campanian Rybushka Formation (Penza Oblast, Russia) by Averianov & Kurin (2022), who consider Bogolubovia to be a valid taxon that can be distinguished from the pteranodontids Pteranodon and Volgadraco.[376]
  • A study aiming to determine the ability of a 5-m-wingspan ornithocheiran pterosaur (SMNK PAL 1133, a specimen of Anhanguera or Coloborhynchus from the Romualdo Formation in Brazil) to assume the poses required to launch bipedally or quadrupedally is published by Griffin et al. (2022).[377]
  • Duque, Pinheiro & Barreto (2022) describe an anterior fragment of a rostrum of Anhanguera that lacks a sagittal crest, and interpret the absence of a crest in the studied specimen as indicating that this structure varied in terms of ontogeny and/or sex in Anhanguera.[378]
  • Redescription and a study on the phylogenetic affinities of Ferrodraco lentoni is published by Pentland et al. (2022).[379]
  • The first fossil material of azhdarchoid pterosaurs from the Albian Gault Formation (Kent, England, United Kingdom) is described by Smith & Martill (2022).[380]
  • New skeleton of Sinopterus, providing additional information of the postcranial morphology of this pterosaur, is described by Zhou, Niu & Yu (2022).[381]
  • Description of a medium-sized wing skeleton of Sinopterus from the Jiufotang Formation, possibly representing a late juvenile ontogenetic stage, and a study on the histology and life history of this specimen is published by Zhou et al. (2022).[382]
  • Cincotta et al. (2022) describe a specimen of Tupandactylus (belonging or related to the species T. imperator) from the Lower Cretaceous Crato Formation (Brazil) associated with skin, monofilaments and branched integumentary structures preserving melanosomes that show tissue-specific geometries (a feature previously known only from theropod dinosaurs), and interpret this finding as indicating that branched integumentary structures in pterosaurs are feathers, as well as providing evidence of deep evolutionary origins of tissue-specific partitioning of melanosome geometry.[383]
  • A new specimen of Caiuajara dobruskii, representing the most complete skull of a member of this species known so far and providing new information on the cranial anatomy of this pterosaur, is described by Canejo et al. (2022).[384]
  • New pterosaur footprint assemblage is described from the Cenomanian Jangdong Formation (South Korea) by Jung et al. (2022), who interpret the studied footprints as possibly produced by small dsungaripteroids, and possibly indicative of gregarious behavior by individuals from different age groups.[385]
  • A fragment of the wing metacarpal of a member or a relative of the genus Lonchognathosaurus is described from the Lower Cretaceous Ilek Formation at the Novochernorechensk locality (Krasnoyarsk Territory, Russia) by Averianov et al. (2022), representing the first pterosaur postcranial bone from this formation and the first record of a dsungaripterid from Russia reported to date.[386]
  • Cervical vertebra of a large pterosaur is described from the Campanian coastal marine deposits of Izhberda Quarry near the town of Orsk (Orenburg Oblast, Russia) by Averianov, Zverkov & Nikiforov (2022), who interpret this finding as the first record of a giant azhdarchid on the territory of Russia reported to date.[387]
  • Díaz-Martínez et al. (2022) describe four pterosaur manus tracks from the Upper Cretaceous Anacleto Formation (Argentina, representing the first occurrence of pterosaurs from the lower–middle Campanian of Argentina and expanding the knowledge of the worldwide pterosaur ichnological Upper Cretaceous record.[388]

Other archosaurs edit

Other archosaur taxa edit

Name Novelty Status Authors Age Type locality Country Notes Images
Gamatavus[389] Gen. et sp. nov Valid Pretto et al. Middle-Late Triassic (Ladinian-Carnian) Santa Maria Formation   Brazil A silesaurid. The type species is G. antiquus.

Maehary[390]

Gen. et sp. nov

Valid

Kellner et al.

Late Triassic (Norian)

Candelária Sequence of the Santa Maria Supersequence

  Brazil

Probably an early-diverging member of Pterosauromorpha. The type species is M. bonapartei.

 

Other archosaur research edit

  • A study on the morphospace occupation of distinct skeletal regions of lagerpetids, aiming to determine which portions of the lagerpetid skeleton are more similar to the anatomy of pterosaurs, is published by Müller (2022).[391]
  • Faxinalipterus minimus, originally classified as an early pterosaur, is reinterpreted as a lagerpetid by Kellner et al. (2022).[390]
  • Foffa et al. (2022) present new whole-skeletal reconstruction and a revised diagnosis of Scleromochlus taylori, confirming that it was a member of Pterosauromorpha.[392]
  • A femur of an indeterminate dinosauromorph is described from the Middle Triassic Dinodontosaurus Assemblage Zone (Pinheiros-Chiniquá Sequence, Brazil) by Müller & Garcia (2022), potentially representing the oldest dinosauromorph from South America reported to date.[393]

General research edit

  • Gatesy et al. (2022) propose a standard methodological approach for measuring the relative position and orientation of the major segments of the pelvis and hindlimb of extant and fossil archosaurs in three dimensions.[394]
  • A study on the locomotion of extant and extinct archosaurs, reevaluating postulated superiority of early dinosaurs in locomotor function and performance compared with other archosaurs, is published by Cuff et al. (2022).[395]
  • A study on the evolution of the orbit shape in Mesozoic archosauromorphs is published by Lautenschlager (2022). [396]
  • Sakamoto (2022) presents modelling framework that allows the prediction of jaw muscle parameters and bite force in extinct archosaurs from skull width and phylogeny.[397]
  • A study aiming to determine how well attachment areas of hindlimb muscles of archosaurs matches each muscle's physiological cross-sectional area, based on data from extant archosaurs (primarily Nile crocodiles and elegant crested tinamous), is published by Cuff et al. (2022), who use their findings to reconstruct physiological cross-sectional areas of the hindlimb muscles of Coelophysis bauri.[398]
  • A study on the evolutionary history of morphogenesis of the femoral head from early archosaurs to crown birds, based on data from fossil record and from embryos of extant animals, is published by Egawa et al. (2022).[399]
  • Evidence from molecular analyses of modern and fossil skeletal samples, interpreted as indicating that metabolic rates consistent with endothermy are ancestral to ornithodirans, is presented by Wiemann et al. (2022);[400] their conclusions are subsequently challenged by Motani et al. (2023), who argue that inference of endothermy based on ALE biomarkers and ancestral state reconstruction is poorly supported by the current evidence, criticism that has been addressed by the authors.[401][402]
  • A study on the diversification and body size evolution of terrestrial pan-avian archosaurs along the Triassic and Early Jurassic is published by Langer & Godoy (2022)[403]
  • A study on the proportions of the feet of bipedal and potentially bipedal archosaurs (including dinosaurs), and on their implications for the identification of trackmakers of putative Late Triassic–Early Jurassic dinosaur footprints, is published by Farlow et al. (2022), who argue that the majority of well-preserved Eubrontes footprints was more likely to be produced by theropods than sauropodomorphs, but find it difficult to determine the most likely makers of Otozoum.[404]
  • A study on the potential soaring performances of extinct giant birds and pterosaurs is published by Goto et al. (2022).[405]
  • Pittman et al. (2022) document the preserved soft-tissue profiles of the shoulder and chest of Microraptor, Anchiornis, Archaeopteryx, Confuciusornis and Sapeornis, and evaluate their implications for the knowledge of early flight development in theropods.[406]
  • Pittman et al. (2022) attempt to infer the ecology of early flyers Ambopteryx, Microraptor, Anchiornis, Archaeopteryx, Confuciusornis, Fortunguavis, Sapeornis and Yanornis from the anatomy of their feet.[407]
  • A study on the diversity of avian and non-avian theropod tracks from the Aptian Ninesting Creek site (Gething Formation, British Columbia, Canada) is published by Lockley et al. (2022), who report evidence indicating that the diversity of smaller avian and non-avian theropod tracks outnumbers large theropod morphotypes by about 7:1.[408]
  • Description of archosaur eggshells from the Late Cretaceous El Gallo Formation (Mexico) and a study on the use of the eggshells to infer the environment of the area is published by Cabrera-Hernández et al. (2022).[409]

References edit

  1. ^ White MA, Bell PR, Campione NE, Sansalone G, Brougham T, Bevitt JJ, Molnar RE, Cook AG, Wroe S, Elliott DA (2022-02-10). "Abdominal contents reveal Cretaceous crocodyliforms ate dinosaurs". Gondwana Research. 106: 281–302. Bibcode:2022GondR.106..281W. doi:10.1016/j.gr.2022.01.016. ISSN 1342-937X. S2CID 246756546.
  2. ^ Venczel M, Codrea VA (2022). "A new late Eocene alligatoroid crocodyliform from Transylvania". Comptes Rendus Palevol. 21 (20): 411–429. doi:10.5852/cr-palevol2022v21a20. S2CID 248879850.
  3. ^ Marinho TS, Martinelli AG, Basilici G, Soares MV, Marconato A, Ribeiro LC, Iori FV (2022). "First Upper Cretaceous notosuchians (Crocodyliformes) from the Uberaba Formation (Bauru Group), southeastern Brazil: enhancing crocodyliform diversity". Cretaceous Research. 129: Article 105000. Bibcode:2022CrRes.12905000M. doi:10.1016/j.cretres.2021.105000. S2CID 238725546.
  4. ^ Wu XC, Wang YC, You HL, Zhang YQ, Yi LP (2022). "New brevirostrines (Crocodylia, Brevirostres) from the Upper Cretaceous of China". Cretaceous Research. 144. 105450. doi:10.1016/j.cretres.2022.105450. S2CID 255051769.
  5. ^ Iijima M, Qiao Y, Lin W, Peng Y, Yoneda M, Liu J (2022). "An intermediate crocodylian linking two extant gharials from the Bronze Age of China and its human-induced extinction". Proceedings of the Royal Society B: Biological Sciences. 289 (1970): Article ID 20220085. doi:10.1098/rspb.2022.0085. PMC 8905159. PMID 35259993.
  6. ^ Brochu, C.A.; de Celis, A.; Adams, A. J.; Drumheller, S. K.; Nestler, J. H.; Benefit, B.a R.; Grossman, A.; Kirera, F.; Lehmann, T.; Liutkus-Pierce, C.; Manthi, F. K.; McCrossin, M. L.; McNulty, K. P.; Nyaboke Juma, R. (2022). "Giant dwarf crocodiles from the Miocene of Kenya and crocodylid faunal dynamics in the late Cenozoic of East Africa". The Anatomical Record. 305 (10): 2729–2765. doi:10.1002/ar.25005. PMC 9541231. PMID 35674271. S2CID 249465457.
  7. ^ Butler RJ, Fernandez V, Nesbitt SJ, Leite JV, Gower DJ (2022). "A new pseudosuchian archosaur, Mambawakale ruhuhu gen. et sp. nov., from the Middle Triassic Manda Beds of Tanzania". Royal Society Open Science. 9 (2): Article ID 211622. Bibcode:2022RSOS....911622B. doi:10.1098/rsos.211622. PMC 8826131. PMID 35154797.
  8. ^ Massonne T, Augustin FJ, Matzke AT, Weber E, Böhme M (2022). "A new species of Maomingosuchus from the Eocene of the Na Duong Basin (northern Vietnam) sheds new light on the phylogenetic relationship of tomistomine crocodylians and their dispersal from Europe to Asia". Journal of Systematic Palaeontology. 19 (22): 1551–1585. doi:10.1080/14772019.2022.2054372. S2CID 248909844.
  9. ^ Boerman SA, Perrichon G, Yang J, Li CS, Martin JE, Speijer RP, Smith T (2022). "A juvenile skull from the early Palaeocene of China extends the appearance of crocodyloids in Asia back by 15–20 million years". Zoological Journal of the Linnean Society. 197 (3): 787–811. doi:10.1093/zoolinnean/zlac067.
  10. ^ Salas-Gismondi R, Ochoa D, Jouve S, Romero PE, Cardich J, Perez A, DeVries T, Baby P, Urbina M, Carré M (2022). "Miocene fossils from the southeastern Pacific shed light on the last radiation of marine crocodylians". Proceedings of the Royal Society B: Biological Sciences. 289 (1974): Article ID 20220380. doi:10.1098/rspb.2022.0380. PMC 9091840. PMID 35538785.
  11. ^ a b Sennikov AG (2022). "A New Pseudosuchian from the Early Triassic of Eastern Europe". Paleontological Journal. 56 (11): 1391–1418. Bibcode:2022PalJ...56.1391S. doi:10.1134/S0031030122110168. S2CID 256618821.
  12. ^ Fachini TS, Godoy PL, Marsola JC, Montefeltro FC, Langer MC (2022). "A large-sized mesoeucrocodylian from the Late Cretaceous of Brazil with possible neosuchian affinities". Historical Biology: An International Journal of Paleobiology. 35 (10): 1817–1830. doi:10.1080/08912963.2022.2122822. S2CID 252572878.
  13. ^ Rummy P, Wu XC, Clark JM, Zhao Q, Jin CZ, Shibata M, Jin F, Xu X (2022). "A new paralligatorid (Crocodyliformes, Neosuchia) from the middle Cretaceous of Jilin Province, northeastern China". Cretaceous Research. 129: Article 105018. Bibcode:2022CrRes.12905018R. doi:10.1016/j.cretres.2021.105018. S2CID 239651801.
  14. ^ Bona P, Fernandez Blanco MV, Ezcurra MD, von Baczko MB, Desojo JB, Pol D (2022). "On the homology of crocodylian post-dentary bones and their macroevolution throughout Pseudosuchia". The Anatomical Record. 305 (10): 2980–3001. doi:10.1002/ar.24873. PMID 35202518. S2CID 247107423.
  15. ^ Sellers KC, Nieto MN, Degrange FJ, Pol D, Clark JM, Middleton KM, Holliday CM (2022). "The effects of skull flattening on suchian jaw muscle evolution". The Anatomical Record. 305 (10): 2791–2822. doi:10.1002/ar.24912. PMID 35661427. S2CID 249387665.
  16. ^ Sennikov AG (2022). "On the pseudosuchians Tsylmosuchus donensis and Scythosuchus basileus from the Early Triassic of Eastern Europe". Paleontological Journal. 56 (1): 91–96. Bibcode:2022PalJ...56...91S. doi:10.1134/S0031030121060113. S2CID 248132677.
  17. ^ Damke LV, Pretto FA, Mastrantonio BM, Garcia MS, Da-Rosa ÁA (2022). "New material of Loricata (Archosauria: Pseudosuchia) from the Late Triassic (Carnian, Hyperodapedon Assemblage Zone) of southern Brazil". Journal of South American Earth Sciences. 115: Article 103754. Bibcode:2022JSAES.11503754D. doi:10.1016/j.jsames.2022.103754. S2CID 247431873.
  18. ^ Polet DT, Hutchinson JR (2022). "Estimating Gaits of an Ancient Crocodile-Line Archosaur Through Trajectory Optimization, With Comparison to Fossil Trackways". Frontiers in Bioengineering and Biotechnology. 9: Article 800311. doi:10.3389/fbioe.2021.800311. PMC 8852800. PMID 35186914.
  19. ^ Mujal E, Foth C, Maxwell EE, Seegis D, Schoch RR (2022). "Feeding habits of the Middle Triassic pseudosuchian Batrachotomus kupferzellensis from Germany and palaeoecological implications for archosaurs". Palaeontology. 65 (3): e12597. Bibcode:2022Palgy..6512597M. doi:10.1111/pala.12597. S2CID 248657885.
  20. ^ Ponce DA, Desojo JB, Cerda IA (2023). "Palaeobiological inferences of the aetosaur Aetosauroides scagliai (Archosauria: Pseudosuchia) based on microstructural analyses of its appendicular bones". Historical Biology: An International Journal of Paleobiology. 35 (3): 303–314. Bibcode:2023HBio...35..303P. doi:10.1080/08912963.2022.2035728. S2CID 247163970.
  21. ^ Desmet HG, Antczak M, Bodzioch A (2022). "Pelvic girdle morphology in Stagonolepis, with remarks on aetosaur systematics". Annales Societatis Geologorum Poloniae. 92 (3): 253–275. doi:10.14241/asgp.2022.10. S2CID 252574619.
  22. ^ Pochat-Cottilloux Y, Martin JE, Amiot R, Cubo J, de Buffrénil V (2022). "A survey of osteoderm histology and ornamentation among Crocodylomorpha: A new proxy to infer lifestyle?". Journal of Morphology. 284 (1). e21542. doi:10.1002/jmor.21542. PMC 10108047. PMID 36533737. S2CID 254771882.
  23. ^ Dollman KN, Choiniere JN (2022). "Palate evolution in early-branching crocodylomorphs: Implications for homology, systematics, and ecomorphology". The Anatomical Record. 305 (10): 2766–2790. doi:10.1002/ar.24993. PMC 9543995. PMID 35595547. S2CID 248948502.
  24. ^ To KH, Nesbitt S, Stocker MR (2022). "An early-diverging crocodylomorph from the early Norian (Late Triassic) of Texas demonstrates a wide distribution of early members across low-latitude Pangea". Journal of Vertebrate Paleontology. 41 (6): e2075752. doi:10.1080/02724634.2021.2075752. S2CID 250540979.
  25. ^ Ruebenstahl AA, Klein MD, Yi H, Xu X, Clark JM (2022). "Anatomy and relationships of the early diverging Crocodylomorphs Junggarsuchus sloani and Dibothrosuchus elaphros". The Anatomical Record. 305 (10): 2463–2556. doi:10.1002/ar.24949. PMC 9541040. PMID 35699105. S2CID 249645515.
  26. ^ Castanera D, Pascual-Arribas C, Canudo JI, Puértolas-Pascual E (2022). "A new look at Crocodylopodus meijidei: implications for crocodylomorph locomotion". Journal of Vertebrate Paleontology. 41 (5): e2020803. doi:10.1080/02724634.2021.2020803. S2CID 247566740.
  27. ^ Marsà JA, Martinelli AG, Lio G, Nava W, Novas FE (2022). "Bone microstructure in terrestrial Mesozoic Crocodylomorpha: Neuquensuchus and notosuchians". Lethaia. 55 (3): 1–11. Bibcode:2022Letha..55..3.6G. doi:10.18261/let.55.3.6. S2CID 252346830.
  28. ^ Cubo J, Aubier P, Faure-Brac MG, Martet G, Pellarin R, Pelletan I, Sena MV (2022). "Paleohistological inferences of thermometabolic regimes in Notosuchia (Pseudosuchia: Crocodylomorpha) revisited". Paleobiology. 49 (2): 342–352. doi:10.1017/pab.2022.28. S2CID 252414220.
  29. ^ Sena MV, Marinho TS, Montefeltro FC, Langer MC, Fachini TS, Nava WR, Pinheiro AE, de Araújo EV, Aubier P, de Andrade PC, Sayão JM, de Oliveira GR, Cubo J (2022). "Osteohistological characterization of notosuchian osteoderms: evidence for an overlying thick leathery layer of skin". Journal of Morphology. 284 (1): e21536. doi:10.1002/jmor.21536. PMC 10107732. PMID 36394285. S2CID 253576887.
  30. ^ Navarro T, Cerda I, Barrios F, Pol D (2022). "Dental histology and attachment tissues in Notosuchus terrestris (Crocodyliformes, Notosuchia): palaeobiological implications". Lethaia. 55 (1): 1–10. Bibcode:2022Letha..55.1.10N. doi:10.18261/let.55.1.10. hdl:11336/196925. S2CID 249213172.
  31. ^ Sena MV, Andrade RC, Carvalho LB, Azevedo SA, Sayão JM, Oliveira GR (2022). "Paleohistology of the crocodyliform Mariliasuchus amarali Carvalho & Bertini, 1999 (Mesoeucrocodylia, Notosuchia) based on a new specimen from the Upper Cretaceous of Brazil". Comptes Rendus Palevol. 21 (17): 349–361. doi:10.5852/cr-palevol2022v21a17. S2CID 248656756.
  32. ^ Bravo GG, Pol D, Armella MA, Gómez K (2022). "The choanal anatomy of the Sebecus icaeorhinus Simpson, 1937 and the variation of the palatine shape in notosuchians (Crocodyliformes, Mesoeucrocodylia)". Journal of Paleontology. 96 (6): 1400–1412. Bibcode:2022JPal...96.1400B. doi:10.1017/jpa.2022.48. S2CID 249826743.
  33. ^ Groh SS, Upchurch P, Barrett PM, Day JJ (2022). "How to date a crocodile: estimation of neosuchian clade ages and a comparison of four time-scaling methods" (PDF). Palaeontology. 65 (2): e12589. Bibcode:2022Palgy..6512589G. doi:10.1111/pala.12589. S2CID 247425644.
  34. ^ Parra S, Sellés A (2022). "New cranial remains of the broad-nosed crocodile Elosuchus (Pholidosauridae; Mesoeucocodrylia) and its palaeoecological implications". Historical Biology: An International Journal of Paleobiology. 35 (10): 1992–1998. doi:10.1080/08912963.2022.2130791. S2CID 252825965.
  35. ^ Cowgill T, Young MT, Schwab JA, Walsh S, Witmer LM, Herrera Y, Dollman KN, Turner AH, Brusatte SL (2022). "Cephalic salt gland evolution in Mesozoic pelagic crocodylomorphs". Zoological Journal of the Linnean Society. 197 (3): 812–835. doi:10.1093/zoolinnean/zlac027. hdl:20.500.11820/44ebdb58-d449-49de-a8a4-347d1aa11832.
  36. ^ Johnson MM, Foffa D, Young MT, Brusatte SL (2022). "The ecological diversification and evolution of Teleosauroidea (Crocodylomorpha, Thalattosuchia), with insights into their mandibular biomechanics". Ecology and Evolution. 12 (11). e9484. Bibcode:2022EcoEv..12E9484J. doi:10.1002/ece3.9484. PMC 9674474. PMID 36415878.
  37. ^ Hicham B, Nehili A, Ouzzaouit LA, Jouve S, Boudad L, Masrour M, Jalil N, Arrad TY (2022). "Discovery of the teleosauroid crocodylomorph from the early Jurassic of Chaara cave, Middle Atlas of Morocco". Journal of African Earth Sciences. 198. 104804. doi:10.1016/j.jafrearsci.2022.104804. S2CID 256771877.
  38. ^ Serafini G, Gordon CM, Foffa D, Cobianchi M, Giusberti L (2022). "Tough to digest: first record of Teleosauroidea (Thalattosuchia) in a regurgitalite from the Upper Jurassic of north-eastern Italy". Papers in Palaeontology. 8 (6): e1474. Bibcode:2022PPal....8E1474S. doi:10.1002/spp2.1474. S2CID 254342106.
  39. ^ Le Mort J, Martin JE, Picot L, Hua S (2022). "First description of the most complete Metriorhynchus aff. superciliosus (Thalattosuchia) specimen from the Callovian of the Vaches-Noires cliffs (Normandy, France) and limitations in the classification of Metriorhynchidae". Annales de Paléontologie. 108 (3). 102539. Bibcode:2022AnPal.10802539L. doi:10.1016/j.annpal.2022.102539. S2CID 254175334.
  40. ^ Darlim G, Lee MS, Walter J, Rabi M (2022). "The impact of molecular data on the phylogenetic position of the putative oldest crown crocodilian and the age of the clade". Biology Letters. 18 (2): Article ID 20210603. doi:10.1098/rsbl.2021.0603. PMC 8825999. PMID 35135314. S2CID 246652848.
  41. ^ Lindblad KT, Moreno-Bernal JW, McKellar RC, Velez MI (2022). "The Northern Crocodile: first report of Borealosuchus (Eusuchia: Crocodylia) from Saskatchewan's Lower Ravenscrag Formation (earliest Paleocene) with implications for biogeography". Canadian Journal of Earth Sciences. 59 (9): 623–638. Bibcode:2022CaJES..59..623L. doi:10.1139/cjes-2022-0010. S2CID 249051259.
  42. ^ Moreno-Azanza M, Pérez-Pueyo M, Puértolas-Pascual E, Núñez-Lahuerta C, Mateus O, Bauluz B, Bádenas B, Canudo JI (2022). "A new crocodylomorph related ootaxon from the late Maastrichtian of the Southern Pyrenees (Huesca, Spain)". Historical Biology: An International Journal of Paleobiology. 35 (8): 1460–1469. doi:10.1080/08912963.2022.2098024. S2CID 250967236.
  43. ^ Puértolas-Pascual E, Serrano-Martínez A, Pérez-Pueyo M, Bádenas B, Canudo JI (2022). "New data on the neuroanatomy of basal eusuchian crocodylomorphs (Allodaposuchidae) from the Upper Cretaceous of Spain". Cretaceous Research. 135: Article 105170. Bibcode:2022CrRes.13505170P. doi:10.1016/j.cretres.2022.105170. S2CID 246966830.
  44. ^ Kuzmin IT (2022). "Crocodyliform remains from the Upper Cretaceous of Central Asia – evidence for one of the oldest Crocodylia?". Cretaceous Research. 138: Article 105266. Bibcode:2022CrRes.13805266K. doi:10.1016/j.cretres.2022.105266. S2CID 249355618.
  45. ^ Bona P, Barrios F, Ezcurra MD, Fernández Blanco MV (2022). "The taxonomic status of Notocaiman stromeri (Crocodylia, Alligatoroidea) and the early diversity of South American caimanines". Ameghiniana. 59 (3): 210–220. doi:10.5710/AMGH.27.02.2022.3470. S2CID 247273365.
  46. ^ Paiva AL, Godoy PL, Souza RB, Klein W, Hsiou AS (2022). "Body size estimation of Caimaninae specimens from the Miocene of South America". Journal of South American Earth Sciences. 118: Article 103970. Bibcode:2022JSAES.11803970P. doi:10.1016/j.jsames.2022.103970. S2CID 251560425.
  47. ^ Pessoa-Lima C, Tostes-Figueiredo J, Macedo-Ribeiro N, Hsiou AS, Muniz FP, Maulin JA, Franceschini-Santos VH, Sousa FB, Barbosa F, Line SR, Gerlach RF, Langer MC (2022). "Structure and Chemical Composition of ca. 10-Million-Year-Old (Late Miocene of Western Amazon) and Present-Day Teeth of Related Species". Biology. 11 (11). 1636. doi:10.3390/biology11111636. PMC 9687460. PMID 36358337.
  48. ^ Massonne T, Böhme M (2022). "Re-evaluation of the morphology and phylogeny of Diplocynodon levantinicum Huene & Nikoloff, 1963 and the stratigraphic age of the West Maritsa coal field (Upper Thrace Basin, Bulgaria)". PeerJ. 10: e14167. doi:10.7717/peerj.14167. PMC 9653056. PMID 36389401.
  49. ^ Ristevski J, Weisbecker V, Scanlon JD, Price GJ, Salisbury SW (2022). "Cranial anatomy of the mekosuchine crocodylian Trilophosuchus rackhami Willis, 1993". The Anatomical Record. 306 (2): 239–297. doi:10.1002/ar.25050. PMC 10086963. PMID 36054424. S2CID 251558183.
  50. ^ Ristevski J (2022). "Neuroanatomy of the mekosuchine crocodylian Trilophosuchus rackhami Willis, 1993". Journal of Anatomy. 241 (4): 981–1013. doi:10.1111/joa.13732. PMC 9482699. PMID 36037801.
  51. ^ Voiculescu-Holvad C (2022). "Historical material of cf. Thoracosaurus from the Maastrichtian of Denmark provides new insight into the K/Pg distribution of Crocodylia". Cretaceous Research. 139: Article 105309. Bibcode:2022CrRes.13905309V. doi:10.1016/j.cretres.2022.105309. S2CID 250719685.
  52. ^ Martin JE, Richardin P, Perrichon G, Pochat-Cottilloux Y, Phouybanhdyt B, Salaviale C, Adrien J (2022). "The oldest occurrence of Crocodylus in Madagascar and the Holocene crocodylian turnover". Journal of Vertebrate Paleontology. 41 (6): e2063058. doi:10.1080/02724634.2021.2063058. S2CID 249146169.
  53. ^ Vila B, Sellés A, Moreno-Azanza M, Razzolini NL, Gil-Delgado A, Canudo JI, Galobart À (2022). "A titanosaurian sauropod with Gondwanan affinities in the latest Cretaceous of Europe". Nature Ecology & Evolution. 6 (3): 288–296. Bibcode:2022NatEE...6..288V. doi:10.1038/s41559-021-01651-5. PMID 35132183. S2CID 246650381.
  54. ^ Dai H, Li N, Maidment SC, Wei G, Zhou YX, Hu XF, Ma QY, Wang XQ, Hu HQ, Peng GZ (2022). "New Stegosaurs from the Middle Jurassic Lower Member of the Shaximiao Formation of Chongqing, China". Journal of Vertebrate Paleontology. 41 (5): e1995737. doi:10.1080/02724634.2021.1995737. S2CID 247267743.
  55. ^ Dalman SG, Jasinski SE, Lucas SG (2022). "A new chasmosaurine ceratopsid from the Upper Cretaceous (Campanian) Farmington Member of the Kirtland Formation, New Mexico". New Mexico Museum of Natural History and Science Bulletin. 90: 127–153.
  56. ^ a b Silva Junior JC, Martinelli AG, Marinho TS, da Silva JI, Langer MC (2022). "New specimens of Baurutitan britoi and a taxonomic reassessment of the titanosaur dinosaur fauna (Sauropoda) from the Serra da Galga Formation (Late Cretaceous) of Brazil". PeerJ. 10. e14333. doi:10.7717/peerj.14333. PMC 9673870. PMID 36405026.
  57. ^ Warshaw, Elías A.; Fowler, Denver W. (2022). "A transitional species of Daspletosaurus Russell, 1970 from the Judith River Formation of eastern Montana". PeerJ. 10. e14461. doi:10.7717/peerj.14461. PMC 9703990. PMID 36452080.
  58. ^ Wang, Xuri; Cau, Andrea; Guo, Bin; Ma, Feimin; Qing, Gele; Liu, Yichuan (2022-11-19). "Intestinal preservation in a birdlike dinosaur supports conservatism in digestive canal evolution among theropods". Scientific Reports. 12 (1). 19965. Bibcode:2022NatSR..1219965W. doi:10.1038/s41598-022-24602-x. ISSN 2045-2322. PMC 9675785. PMID 36402874.
  59. ^ Averianov AO, Sues HD (2022). "New material and diagnosis of a new taxon of alvarezsaurid (Dinosauria, Theropoda) from the Upper Cretaceous Bissekty Formation of Uzbekistan". Journal of Vertebrate Paleontology. 41 (5): e2036174. doi:10.1080/02724634.2021.2036174. S2CID 247391327.
  60. ^ Baiano MA, Pol D, Bellardini F, Windholz GJ, Cerda IA, Garrido AC, Coria RA (2022). "Elemgasem nubilus: a new brachyrostran abelisaurid (Theropoda, Ceratosauria) from the Portezuelo Formation (Upper Cretaceous) of Patagonia, Argentina". Papers in Palaeontology. 8 (5): e1462. Bibcode:2022PPal....8E1462B. doi:10.1002/spp2.1462. S2CID 252097368.
  61. ^ Agnolín FL, Cerroni MA, Scanferla A, Goswami A, Paulina-Carabajal A, Halliday T, Cuff AR, Reuil S (2022). "First definitive abelisaurid theropod from the Late Cretaceous of Northwestern Argentina". Journal of Vertebrate Paleontology. 41 (4): e2002348. doi:10.1080/02724634.2021.2002348. S2CID 246766133.
  62. ^ a b Rozadilla, Sebastián; Brissón-Egli, Federico; Lisandro Agnolín, Federico; Aranciaga-Rolando, Alexis Mauro; Novas, Fernando Emilio (2022). "A new hadrosaurid (Dinosauria: Ornithischia) from the Late Cretaceous of northern Patagonia and the radiation of South American hadrosaurids". Journal of Systematic Palaeontology. 19 (17): 1207–1235. doi:10.1080/14772019.2021.2020917. S2CID 247122005.
  63. ^ Mateus O, Estraviz-López D (2022). "A new theropod dinosaur from the Early Cretaceous (Barremian) of Cabo Espichel, Portugal: Implications for spinosaurid evolution". PLOS ONE. 17 (2): e0262614. Bibcode:2022PLoSO..1762614M. doi:10.1371/journal.pone.0262614. PMC 8849621. PMID 35171930.
  64. ^ Navarro, Bruno A.; Ghilardi, Aline M.; Aureliano, Tito; Díaz, Verónica Díez; Bandeira, Kamila L. N.; Cattaruzzi, André G. S.; Iori, Fabiano V.; Martine, Ariel M.; Carvalho, Alberto B.; Anelli, Luiz E.; Fernandes, Marcelo A.; Zaher, Hussam (2022-09-15). "A New Nanoid Titanosaur (Dinosauria: Sauropoda) from the Upper Cretaceous of Brazil". Ameghiniana. 59 (5): 317–354. doi:10.5710/AMGH.25.08.2022.3477. ISSN 1851-8044. S2CID 251875979.
  65. ^ Forster CA, de Klerk WJ, Poole KE, Chinsamy-Turan A, Roberts EM, Ross CF (2022). "Iyuku raathi, a new iguanodontian dinosaur from the Early Cretaceous Kirkwood Formation, South Africa". The Anatomical Record. 306 (7): 1762–1803. doi:10.1002/ar.25038. PMID 35860957. S2CID 250730794.
  66. ^ Poole K (2022). "Placing juvenile specimens in phylogenies: An ontogenetically sensitive phylogenetic assessment of a new genus of iguanodontian dinosaur from the Early Cretaceous Kirkwood Formation, South Africa". The Anatomical Record. 306 (7): 1939–1950. doi:10.1002/ar.25095. PMID 36314663. S2CID 253235532.
  67. ^ Riguetti FJ, Apesteguía S, Pereda-Suberbiola X (2022). "A new Cretaceous thyreophoran from Patagonia supports a South American lineage of armoured dinosaurs". Scientific Reports. 12 (1): Article number 11621. Bibcode:2022NatSR..1211621R. doi:10.1038/s41598-022-15535-6. PMC 9372066. PMID 35953515.
  68. ^ Aranciaga Rolando AM, Motta MJ, Agnolín FL, Manabe M, Tsuihiji T, Novas FE (2022). "A large Megaraptoridae (Theropoda: Coelurosauria) from Upper Cretaceous (Maastrichtian) of Patagonia, Argentina". Scientific Reports. 12 (1): Article number 6318. Bibcode:2022NatSR..12.6318A. doi:10.1038/s41598-022-09272-z. PMC 9042913. PMID 35474310.
  69. ^ Prieto-Márquez A, Wagner JR (2022). "A new 'duck-billed' dinosaur (Ornithischia: Hadrosauridae) from the upper Campanian of Texas points to a greater diversity of early hadrosaurid offshoots". Cretaceous Research. 143. 105416. doi:10.1016/j.cretres.2022.105416. S2CID 253470207.
  70. ^ Griffin CT, Wynd BM, Munyikwa D, Broderick TJ, Zondo M, Tolan S, Langer MC, Nesbitt SJ, Taruvinga HR (2022). "Africa's oldest dinosaurs reveal early suppression of dinosaur distribution". Nature. 609 (7926): 313–319. Bibcode:2022Natur.609..313G. doi:10.1038/s41586-022-05133-x. PMID 36045297. S2CID 251977824.
  71. ^ Rolando MA, Garcia Marsà JA, Agnolín FL, Motta MJ, Rodazilla S, Novas FE (2022). "The sauropod record of Salitral Ojo del Agua: An Upper Cretaceous (Allen Formation) fossiliferous locality from northern Patagonia, Argentina". Cretaceous Research. 129: Article 105029. Bibcode:2022CrRes.12905029R. doi:10.1016/j.cretres.2021.105029. ISSN 0195-6671. S2CID 240577726.
  72. ^ Canale JI, Apesteguia S, Gallina PA, Mitchell J, Smith ND, Cullen TM, Shinya A, Haluza A, Gianechini FA, Makovicky PJ (2022). "New giant carnivorous dinosaur reveals convergent evolutionary trends in theropod arm reduction". Current Biology. 32 (14): 3195–3202.e5. Bibcode:2022CBio...32E3195C. doi:10.1016/j.cub.2022.05.057. PMID 35803271. S2CID 250343124.
  73. ^ Ji S, Zhang P (2022). "First new genus and species of basal iguanodontian dinosaur (Ornithischia: Ornithopoda) from southern China". Acta Geoscientica Sinica. 43 (1): 1–10. doi:10.3975/cagsb.2021.090701.
  74. ^ Lee, Sungjin; Lee, Yuong-Nam; Currie, Philip J.; Sissons, Robin; Park, Jin-Young; Kim, Su-Hwan; Barsbold, Rinchen; Tsogtbaatar, Khishigjav (2022-12-01). "A non-avian dinosaur with a streamlined body exhibits potential adaptations for swimming". Communications Biology. 5 (1): 1185. doi:10.1038/s42003-022-04119-9. ISSN 2399-3642. PMC 9715538. PMID 36456823.
  75. ^ Bonde, Joshua W.; Hall, Rebecca L.; Krumenacker, L. J.; Varricchio, David J. (2022). "Nevadadromeus schmitti (gen. et sp. nov.), a New Basal Neornithischian with Affinities to the Thescelosaurinae, from the Upper Cretaceous (Cenomanian) Willow Tank Formation of Southern Nevada". Journal of the Arizona-Nevada Academy of Science. 50 (1): 1–8. doi:10.2181/036.050.0101. ISSN 0193-8509. S2CID 252931645.
  76. ^ Averianov, Alexander O.; Lopatin, Alexey V. (2022-02-19). "A new alvarezsaurid theropod dinosaur from the Upper Cretaceous of Gobi Desert, Mongolia". Cretaceous Research. 135: Article 105168. Bibcode:2022CrRes.13505168A. doi:10.1016/j.cretres.2022.105168. ISSN 0195-6671. S2CID 247000540.
  77. ^ Pei, R.; Qin, Yuying; Wen, Aishu; Zhao, Q.; Wang, Z.; Liu, Z.; Guo, W.; Liu, P.; Ye, W.; Wang, L.; Yin, Z.; Dai, R.; Xu, X. (2022). "A New Troodontid from the Upper Cretaceous Gobi Basin of Inner Mongolia, China". Cretaceous Research. 130: Article 105052. Bibcode:2022CrRes.13005052P. doi:10.1016/j.cretres.2021.105052. S2CID 244186762.
  78. ^ Kobayashi Y, Takasaki R, Fiorillo AR, Chinzorig T, Hikida Y (2022). "New therizinosaurid dinosaur from the marine Osoushinai Formation (Upper Cretaceous, Japan) provides insight for function and evolution of therizinosaur claws". Scientific Reports. 12 (1): Article number 7207. Bibcode:2022NatSR..12.7207K. doi:10.1038/s41598-022-11063-5. PMC 9065154. PMID 35504901.
  79. ^ Riguetti, Facundo; Pereda-Suberbiola, Xabier; Ponce, Denis; Salgado, Leonardo; Apesteguía, Sebastián; Rozadilla, Sebastián; Arbour, Victoria (2022-12-31). "A new small-bodied ankylosaurian dinosaur from the Upper Cretaceous of North Patagonia (Río Negro Province, Argentina)". Journal of Systematic Palaeontology. 20 (1): 2137441. Bibcode:2022JSPal..2037441R. doi:10.1080/14772019.2022.2137441. ISSN 1477-2019. S2CID 254212751.
  80. ^ Rincón AF, Raad Pájaro DA, Jiménez Velandia HF, Ezcurra MD, Wilson Mantilla JA (2022). "A sauropod from the Lower Jurassic La Quinta Formation (Dept. Cesar, Colombia) and the initial diversification of eusauropods at low latitudes". Journal of Vertebrate Paleontology. 42 (1): e2077112. Bibcode:2022JVPal..42E7112R. doi:10.1080/02724634.2021.2077112. S2CID 251501541.
  81. ^ Mo, Jinyou; Ma, Feimin; Yu, Yilun; Xu, Xing (2022-12-09). "A New Titanosauriform Sauropod with An Unusual Tail from the Lower Cretaceous of Northeastern China". Cretaceous Research. 144: 105449. doi:10.1016/j.cretres.2022.105449. ISSN 0195-6671. S2CID 254524890.
  82. ^ Dalman SG, Lucas SG, Jasinski SE, Longrich NR (2022). "Sierraceratops turneri, a new chasmosaurine ceratopsid from the Hall Lake Formation (Upper Cretaceous) of south-central New Mexico". Cretaceous Research. 130: Article 105034. Bibcode:2022CrRes.13005034D. doi:10.1016/j.cretres.2021.105034. S2CID 244210664.
  83. ^ Augustin, Felix J.; Bastiaans, Dylan; Dumbravă, Mihai D.; Csiki-Sava, Zoltán (2022-11-23). "A new ornithopod dinosaur, Transylvanosaurus platycephalus gen. et sp. nov. (Dinosauria: Ornithischia), from the Upper Cretaceous of the Haţeg Basin, Romania". Journal of Vertebrate Paleontology. 42 (2): e2133610. Bibcode:2022JVPal..42E3610A. doi:10.1080/02724634.2022.2133610. ISSN 0272-4634. S2CID 253964320.
  84. ^ Regalado Fernández OR, Werneburg I (2022). "A new massopodan sauropodomorph from Trossingen Formation (Germany) hidden as ' Plateosaurus' for 100 years in the historical Tübingen collection". Vertebrate Zoology. 72: 771–822. doi:10.3897/vz.72.e86348.
  85. ^ a b Paul GS, Persons WS, Van Raalte J (2022). "The Tyrant Lizard King, Queen and Emperor: Multiple Lines of Morphological and Stratigraphic Evidence Support Subtle Evolution and Probable Speciation Within the North American Genus Tyrannosaurus". Evolutionary Biology. 49 (2): 156–179. Bibcode:2022EvBio..49..156P. doi:10.1007/s11692-022-09561-5. S2CID 247200214.
  86. ^ a b Carr TD, Napoli JG, Brusatte SL, Holtz TR, Hone DW, Williamson TE, Zanno LE (2022). "Insufficient Evidence for Multiple Species of Tyrannosaurus in the Latest Cretaceous of North America: A Comment on "The Tyrant Lizard King, Queen and Emperor: Multiple Lines of Morphological and Stratigraphic Evidence Support Subtle Evolution and Probable Speciation Within the North American Genus Tyrannosaurus"". Evolutionary Biology. 49 (3): 327–341. Bibcode:2022EvBio..49..327C. doi:10.1007/s11692-022-09573-1.
  87. ^ Yao X, Barrett PM, Lei Y, Xu X, Bi S (2022). "A new early-branching armoured dinosaur from the Lower Jurassic of southwestern China". eLife. 11: e75248. doi:10.7554/eLife.75248. PMC 8929930. PMID 35289749.
  88. ^ Dai H, Tan C, Xiong C, Ma Q, Li N, Yu H, Wei Z, Wang P, Yi J, Wei G, You H, Ren X (2022). "New macronarian from the Middle Jurassic of Chongqing, China: phylogenetic and biogeographic implications for neosauropod dinosaur evolution". Royal Society Open Science. 9 (11). 220794. Bibcode:2022RSOS....920794D. doi:10.1098/rsos.220794. PMC 9627447. PMID 36340515.
  89. ^ Wilmsen, M., Fürsich, F.T. & Majidifard, M.R. Youngest Cretaceous dinosaur tracksite from the Middle East (Maastrichtian, Farrokhi Formation, Central Iran). Palaeobio Palaeoenv 102, 437–447 (2022). https://doi.org/10.1007/s12549-021-00516-w
  90. ^ Ballell A, Benton MJ, Rayfield EJ (2022). "Dental form and function in the early feeding diversification of dinosaurs". Science Advances. 8 (50): eabq5201. Bibcode:2022SciA....8.5201B. doi:10.1126/sciadv.abq5201. PMC 9757754. PMID 36525501.
  91. ^ Olsen P, Sha J, Fang Y, Chang C, Whiteside JH, Kinney S, Sues HD, Kent D, Schaller M, Vajda V (2022). "Arctic ice and the ecological rise of the dinosaurs". Science Advances. 8 (26): eabo6342. Bibcode:2022SciA....8O6342O. doi:10.1126/sciadv.abo6342. PMC 10883366. PMID 35776799.
  92. ^ Reolid M, Ruebsam W, Benton MJ (2022). "Impact of the Jenkyns Event (early Toarcian) on dinosaurs: Comparison with the Triassic/Jurassic transition". Earth-Science Reviews. 234. 104196. Bibcode:2022ESRv..23404196R. doi:10.1016/j.earscirev.2022.104196. S2CID 252608726.
  93. ^ Reolid M, Ruebsam W, Benton MJ (2022). "Dinosaur extinctions related to the Jenkyns Event (early Toarcian, Jurassic)". Spanish Journal of Palaeontology. 37 (2): 123–140. doi:10.7203/sjp.25683. S2CID 255022626.
  94. ^ Wyenberg-Henzler T (2022). "Ecomorphospace occupation of large herbivorous dinosaurs from Late Jurassic through to Late Cretaceous time in North America". PeerJ. 10: e13174. doi:10.7717/peerj.13174. PMC 9009330. PMID 35433123.
  95. ^ Zhou Y, Dai H, Yu H, Ma Q, Tan C, Li N, Lin Y, Li D (2022). "Zircon geochronology of the new dinosaur fauna in the Middle Jurassic lower Shaximiao Formation in Chongqing, SW China". Palaeogeography, Palaeoclimatology, Palaeoecology. 592: Article 110894. Bibcode:2022PPP...59210894Z. doi:10.1016/j.palaeo.2022.110894. S2CID 247000432.
  96. ^ Klein H, Gierliński GD, Oukassou M, Saber H, Lallensack JN, Lagnaoui A, Hminna A, Charrière A (2023). "Theropod and ornithischian dinosaur track assemblages from Middle to ?Late Jurassic deposits of the Central High Atlas, Morocco". Historical Biology: An International Journal of Paleobiology. 35 (3): 320–346. Bibcode:2023HBio...35..320K. doi:10.1080/08912963.2022.2042808. S2CID 247427512.
  97. ^ Averianov AO, Sizov AV, Grigoriev DV, Pestchevitskaya EB, Vitenko DD, Skutschas PP (2022). "New data on dinosaurs from the Lower Cretaceous Murtoi Formation of Transbaikalia, Russia". Cretaceous Research. 138: Article 105287. Bibcode:2022CrRes.13805287A. doi:10.1016/j.cretres.2022.105287. S2CID 249827079.
  98. ^ Zhang H, Yu D, Feng Y, Pei R, Zhou CF (2022). "A Lujiatun-like dinosaurian assemblage from the Jehol Biota of Ningcheng, Inner Mongolia, Northeast China". Acta Palaeontologica Polonica. 67 (3): 617–621. doi:10.4202/app.00975.2022. S2CID 249905746.
  99. ^ Nudds JR, Lomax DR, Tennant JP (2022). "Gastroliths and Deinonychus teeth associated with a skeleton of Tenontosaurus from the Cloverly Formation (Lower Cretaceous), Montana, USA". Cretaceous Research. 140: Article 105327. Bibcode:2022CrRes.14005327N. doi:10.1016/j.cretres.2022.105327. S2CID 251528559.
  100. ^ Lallensack JN, Owais A, Falkingham PL, Breithaupt BH, Sander PM (2022). "How to verify fossil tracks: the first record of dinosaurs from Palestine". Historical Biology: An International Journal of Paleobiology. 35 (6): 924–934. doi:10.1080/08912963.2022.2069020. S2CID 248589676.
  101. ^ Skutschas PP, Bapinaev RA, Sichinava EA, Zverkov NG, Nikiforov AV (2022). "New Data on Dinosaurs in the Late Cretaceous Sediments of the Southern Urals". Doklady Earth Sciences. 505 (2): 562–564. Bibcode:2022DokES.505..562S. doi:10.1134/S1028334X22080153. S2CID 252189248.
  102. ^ Ramezani J, Beveridge TL, Rogers RR, Eberth DA, Roberts EM (2022). "Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U–Pb geochronology". Scientific Reports. 12 (1). 16026. Bibcode:2022NatSR..1216026R. doi:10.1038/s41598-022-19896-w. PMC 9512893. PMID 36163377.
  103. ^ Enriquez NJ, Campione NE, White MA, Fanti F, Sissons RL, Sullivan C, Vavrek M, Bell PR (2022). "The dinosaur tracks of Tyrants Aisle: An Upper Cretaceous ichnofauna from Unit 4 of the Wapiti Formation (upper Campanian), Alberta, Canada". PLOS ONE. 17 (2): e0262824. Bibcode:2022PLoSO..1762824E. doi:10.1371/journal.pone.0262824. PMC 8809565. PMID 35108301.
  104. ^ Martin JE, Hassler A, Montagnac G, Therrien F, Balter V (2022). "The stability of dinosaur communities before the Cretaceous–Paleogene (K–Pg) boundary: A perspective from southern Alberta using calcium isotopes as a dietary proxy". GSA Bulletin. 134 (9–10): 2548–2560. Bibcode:2022GSAB..134.2548M. doi:10.1130/B36222.1. hdl:2164/20498. S2CID 246756450.
  105. ^ Henderson DM, Borkovic B, Sanchez J, Kowalchuk AL (2022). "A busy time at the beach: multiple examples of gregarious dinosaur behaviour inferred from a set of trackways from the Late Cretaceous of Alberta, Canada". Canadian Journal of Earth Sciences. 59 (9): 608–622. Bibcode:2022CaJES..59..608H. doi:10.1139/cjes-2021-0069. S2CID 251947053.
  106. ^ He Q, Chen Y, Huang J, Xing L, Jiang Q, Gui Z, Zhang W, Hu Y (2022). "Isotope compositions of dinosaur eggs and associated depositional settings in the Upper Cretaceous Huizhou Formation from the Qiyunshan area, Anhui Province, China: implications for paleoenvironmental reconstruction". Historical Biology: An International Journal of Paleobiology. 35 (7): 1197–1208. doi:10.1080/08912963.2022.2084695. S2CID 249966993.
  107. ^ He Q, Chen Z, Zhang S, Gui Z, Chen Y (2022-08-25). "A new oospecies of Shixingoolithus (Shixingoolithus qianshanensis oosp. nov.) from the Qianshan Basin, Anhui Province, East China". Journal of Palaeogeography. 11 (4): 629–639. Bibcode:2022JPalG..11..629H. doi:10.1016/j.jop.2022.08.001. ISSN 2095-3836. S2CID 252933338.
  108. ^ Han F, Wang Q, Wang H, Zhu X, Zhou X, Wang Z, Fang K, Stidham TA, Wang W, Wang X, Li X, Qin H, Fan L, Wen C, Luo J, Pan Y, Deng C (2022). "Low dinosaur biodiversity in central China 2 million years prior to the end-Cretaceous mass extinction". Proceedings of the National Academy of Sciences of the United States of America. 119 (39): e2211234119. Bibcode:2022PNAS..11911234H. doi:10.1073/pnas.2211234119. PMC 9522366. PMID 36122246.
  109. ^ Tahoun M, Engeser M, Namasivayam V, Sander PM, Müller CE (2022). "Chemistry and Analysis of Organic Compounds in Dinosaurs". Biology. 11 (5): Article 670. doi:10.3390/biology11050670. PMC 9138232. PMID 35625398.
  110. ^ Baron MG (2022). "The effect of character and outgroup choice on the phylogenetic position of the Jurassic dinosaur Chilesaurus diegosaurezi". Palaeoworld. 33: 142–151. doi:10.1016/j.palwor.2022.12.001. S2CID 254445760.
  111. ^ Müller RT, Garcia MS (2020). "A paraphyletic 'Silesauridae' as an alternative hypothesis for the initial radiation of ornithischian dinosaurs". Biology Letters. 16 (8): Article ID 20200417. doi:10.1098/rsbl.2020.0417. PMC 7480155. PMID 32842895. S2CID 221298572.
  112. ^ Norman DB, Baron MG, Garcia MS, Müller RT (2022). "Taxonomic, palaeobiological and evolutionary implications of a phylogenetic hypothesis for Ornithischia (Archosauria: Dinosauria)". Zoological Journal of the Linnean Society. 196 (4): 1273–1309. doi:10.1093/zoolinnean/zlac062.
  113. ^ Botha J, Choiniere JN, Barrett PM (2022). "Osteohistology and taphonomy support social aggregation in the early ornithischian dinosaur Lesothosaurus diagnosticus". Palaeontology. 65 (4): e12619. Bibcode:2022Palgy..6512619B. doi:10.1111/pala.12619. S2CID 251819687.
  114. ^ Brown EE, Butler RJ, Barrett PM, Maidment SC (2022). "Assessing conflict between early neornithischian tree topologies" (PDF). Journal of Systematic Palaeontology. 19 (17): 1183–1206. doi:10.1080/14772019.2022.2032433. S2CID 247567256.
  115. ^ Sues HD, Evans DC, Galton PM, Brown CM (2022). "Anatomy of the neornithischian dinosaur Parksosaurus warreni from the Upper Cretaceous (lower Maastrichtian) Horseshoe Canyon Formation of Alberta, Canada". Cretaceous Research. 105369. doi:10.1016/j.cretres.2022.105369. S2CID 252488883.
  116. ^ Cullen TM, Zhang S, Spencer J, Cousens B (2022). "Sr-O-C isotope signatures reveal herbivore niche-partitioning in a Cretaceous ecosystem". Palaeontology. 65 (2): e12591. doi:10.1111/pala.12591. S2CID 247484805.
  117. ^ Ősi A, Barrett PM, Evans AR, Nagy AL, Szenti I, Kukovecz Á, Magyar J, Segesdi M, Gere K, Jó V (2022). "Multi-proxy dentition analyses reveal niche partitioning between sympatric herbivorous dinosaurs". Scientific Reports. 12 (1). 20813. Bibcode:2022NatSR..1220813A. doi:10.1038/s41598-022-24816-z. PMC 9718793. PMID 36460688.
  118. ^ Lauters P, Vercauteren M, Godefroit P (2022). "Endocasts of ornithopod dinosaurs: Comparative anatomy". From Fossils to Mind. Progress in Brain Research. Vol. 275. pp. 1–23. doi:10.1016/bs.pbr.2022.10.002. ISBN 9780323991070. PMID 36841565.
  119. ^ Poole KE (2022). "Phylogeny of iguanodontian dinosaurs and the evolution of quadrupedality". Palaeontologia Electronica. 25 (3). 25.3.a30. doi:10.26879/702.
  120. ^ Dieudonné PE, Torcida Fernández-Baldor F, Stein K (2022). "Histogenesis and growth dynamics of the tiny Vegagete rhabdodontomorph hindlimb (Ornithischia, Ornithopoda): paleoecological and evolutionary implications". Cretaceous Research. 141: Article 105342. doi:10.1016/j.cretres.2022.105342. S2CID 251984848.
  121. ^ Sánchez-Fenollosa S, Verdú FJ, Suñer M, de Santisteban C (2022). "Tracing Late Jurassic ornithopod diversity in the eastern Iberian Peninsula: Camptosaurus-like postcranial remains from Alpuente (Valencia, Spain)". Journal of Iberian Geology. 48 (1): 65–78. Bibcode:2022JIbG...48...65S. doi:10.1007/s41513-021-00182-z. S2CID 245804125.
  122. ^ Rotatori FM, Moreno-Azanza M, Mateus O (2022). "Reappraisal and new material of the holotype of Draconyx loureiroi (Ornithischia: Iguanodontia) provide insights on the tempo and modo of evolution of thumb-spiked dinosaurs". Zoological Journal of the Linnean Society. 195: 125–156. doi:10.1093/zoolinnean/zlab113.
  123. ^ Medrano-Aguado, E.; Parrilla-Bel, J.; Gasca, J. M.; Alonso, A.; Canudo, J. I. (2022-12-26). "Ornithopod diversity in the Lower Cretaceous of Spain: new styracosternan remains from the Barremian of the Maestrazgo Basin (Teruel province, Spain)". Cretaceous Research. 144: 105458. doi:10.1016/j.cretres.2022.105458. ISSN 0195-6671. S2CID 255177225.
  124. ^ Gasulla JM, Escaso F, Narváez I, Sanz JL, Ortega F (2022). "New Iguanodon bernissartensis Axial Bones (Dinosauria, Ornithopoda) from the Early Cretaceous of Morella, Spain". Diversity. 14 (2): Article 63. doi:10.3390/d14020063.
  125. ^ García-Cobeña J, Verdú FJ, Cobos A (2022). "Abundance of large ornithopod dinosaurs in the El Castellar Formation (Hauterivian-Barremian, Lower Cretaceous) of the Peñagolosa sub-basin (Teruel, Spain)". Journal of Iberian Geology. 48 (1): 107–127. Bibcode:2022JIbG...48..107G. doi:10.1007/s41513-021-00185-w. S2CID 246029826.
  126. ^ Samathi A, Suteethorn S (2022). "New materials of iguanodontians (Dinosauria: Ornithopoda) from the Lower Cretaceous Khok Kruat Formation, Ubon Ratchathani, Thailand". Zootaxa. 5094 (2): 301–320. doi:10.11646/zootaxa.5094.2.5. PMID 35391450. S2CID 246588650.
  127. ^ Averianov AO, Lopatin AV, Tsogtbaatar K (2022). "Taxonomic attribution of a juvenile hadrosauroid dinosaur from the Upper Cretaceous Bayinshire Formation of Mongolia". Doklady Rossijskoj Akademii Nauk. Nauki O Zemle. 503 (1): 26–31. doi:10.31857/S2686739722030033. S2CID 246698076.
  128. ^ Xing L, Niu K, Yang TR, Wang D, Miyashita T, Mallon JC (2022). "Hadrosauroid eggs and embryos from the Upper Cretaceous (Maastrichtian) of Jiangxi Province, China". BMC Ecology and Evolution. 22 (1): Article number 60. doi:10.1186/s12862-022-02012-x. PMC 9088101. PMID 35534805.
  129. ^ Augustin FJ, Dumbravă MD, Bastiaans D, Csiki-Sava Z (2022). "Reappraisal of the braincase anatomy of the ornithopod dinosaurs Telmatosaurus and Zalmoxes from the Upper Cretaceous of the Haţeg Basin (Romania) and the taxonomic reassessment of some previously referred specimens". PalZ. 97: 129–145. doi:10.1007/s12542-022-00621-x. S2CID 249319059.
  130. ^ Ramírez-Velasco AA (2022). "Phylogenetic and biogeography analysis of Mexican hadrosauroids". Cretaceous Research. 138: Article 105267. Bibcode:2022CrRes.13805267R. doi:10.1016/j.cretres.2022.105267. S2CID 249559319.
  131. ^ Wyenberg-Henzler T, Patterson RT, Mallon JC (2022). "Ontogenetic dietary shifts in North American hadrosaurids (Dinosauria: Ornithischia)". Cretaceous Research. 135: Article 105177. Bibcode:2022CrRes.13505177W. doi:10.1016/j.cretres.2022.105177. S2CID 247096035.
  132. ^ Takasaki R, Kobayashi Y (2022). "Beak morphology and limb proportions as adaptations of hadrosaurid foraging ecology". Cretaceous Research. 141: Article 105361. doi:10.1016/j.cretres.2022.105361. S2CID 252264599.
  133. ^ Ullmann PV, Ash RD, Scannella JB (2022). "Taphonomic and Diagenetic Pathways to Protein Preservation, Part II: The Case of Brachylophosaurus canadensis Specimen MOR 2598". Biology. 11 (8): 1177. doi:10.3390/biology11081177. PMC 9404959. PMID 36009804.
  134. ^ Bertozzo F, Bolotsky I, Bolotsky YL, Poberezhskiy A, Ruffell A, Godefroit P, Murphy E (2023). "A pathological ulna of Amurosaurus riabinini from the Upper Cretaceous of Far Eastern Russia". Historical Biology: An International Journal of Paleobiology. 35 (2): 268–275. Bibcode:2023HBio...35..268B. doi:10.1080/08912963.2022.2034805. S2CID 247003496.
  135. ^ Xing H, Gu W, Hai S, Yu T, Han D, Zhang Y, Zhang S (2022). "Osteological and taxonomic reassessments of Sahaliyania elunchunorum (Dinosauria, Hadrosauridae) from the Upper Cretaceous Yuliangzi Formation, northeast China". Journal of Vertebrate Paleontology. 41 (6): e2085111. doi:10.1080/02724634.2021.2085111. S2CID 250463301.
  136. ^ Takasaki R, Chiba K, Fiorillo AR, Brink KS, Evans DC, Fanti F, Saneyoshi M, Maltese A, Ishigaki S (2022). "Description of the first definitive Corythosaurus (Dinosauria, Hadrosauridae) specimens from the Judith River Formation in Montana, USA and their paleobiogeographical significance". The Anatomical Record. 306 (7): 1918–1938. doi:10.1002/ar.25097. PMID 36273398. S2CID 253081338.
  137. ^ Scott EE, Chiba K, Fanti F, Saylor BZ, Evans DC, Ryan MJ (2022). "Taphonomy of a monodominant Gryposaurus sp. bonebed from the Oldman Formation (Campanian) of Alberta, Canada". Canadian Journal of Earth Sciences. 59 (6): 389–405. Bibcode:2022CaJES..59..389S. doi:10.1139/cjes-2020-0200. hdl:11585/911545.
  138. ^ Mallon JC, Evans DC, Zhang Y, Xing H (2022). "Rare juvenile material constrains estimation of skeletal allometry in Gryposaurus notabilis (Dinosauria: Hadrosauridae)". The Anatomical Record. 306 (7): 1646–1668. doi:10.1002/ar.25021. PMID 35792557. S2CID 250313106.
  139. ^ Libke C, Bell PR, Somers CM, McKellar RC (2022). "New scale type from a small-bodied hadrosaur in the Frenchman Formation of southern Saskatchewan: potential implications for integumentary diversity in Edmontosaurus annectens". Cretaceous Research. 136: Article 105215. Bibcode:2022CrRes.13605215L. doi:10.1016/j.cretres.2022.105215. S2CID 247898494.
  140. ^ Wosik M, Evans DC (2022). "Osteohistological and taphonomic life-history assessment of Edmontosaurus annectens (Ornithischia: Hadrosauridae) from the Late Cretaceous (Maastrichtian) Ruth Mason Dinosaur Quarry, South Dakota, United States, with implication for ontogenetic segregation between juvenile and adult hadrosaurids". Journal of Anatomy. 241 (2): 272–296. doi:10.1111/joa.13679. PMC 9296034. PMID 35801524.
  141. ^ Drumheller SK, Boyd CA, Barnes BM, Householder ML (2022). "Biostratinomic alterations of an Edmontosaurus "mummy" reveal a pathway for soft tissue preservation without invoking "exceptional conditions"". PLOS ONE. 17 (10): e0275240. Bibcode:2022PLoSO..1775240D. doi:10.1371/journal.pone.0275240. PMC 9555629. PMID 36223345.
  142. ^ Nirody JA, Goodwin MB, Horner JR, Huynh TL, Colbert MW, Smith DK, Evans DC (2022). "Quantifying vascularity in the frontoparietal dome of Stegoceras validum (Dinosauria: Pachycephalosauridae) from high resolution CT scans". Journal of Vertebrate Paleontology. 41 (5): e2036991. doi:10.1080/02724634.2021.2036991. S2CID 247527472.
  143. ^ Moore BR, Roloson MJ, Currie PJ, Ryan MJ, Patterson RT, Mallon JC (2022). "The appendicular myology of Stegoceras validum (Ornithischia: Pachycephalosauridae) and implications for the head-butting hypothesis". PLOS ONE. 17 (9): e0268144. Bibcode:2022PLoSO..1768144M. doi:10.1371/journal.pone.0268144. PMC 9436104. PMID 36048811.
  144. ^ Hu J, Forster CA, Xu X, Zhao Q, He Y, Han F (2022). "Computed tomographic analysis of the dental system of three Jurassic ceratopsians and implications for the evolution of tooth replacement pattern and diet in early-diverging ceratopsians". eLife. 11: e76676. doi:10.7554/eLife.76676. PMC 9068210. PMID 35441592.
  145. ^ Bell PR, Hendrickx C, Pittman M, Kaye TG (2022). "Oldest preserved umbilical scar reveals dinosaurs had 'belly buttons'". BMC Biology. 20 (1): Article number 132. doi:10.1186/s12915-022-01329-9. PMC 9172161. PMID 35672741.
  146. ^ Bell PR, Hendrickx C, Pittman M, Kaye TG, Mayr G (2022). "The exquisitely preserved integument of Psittacosaurus and the scaly skin of ceratopsian dinosaurs". Communications Biology. 5 (1): Article number 809 (2022). doi:10.1038/s42003-022-03749-3. PMC 9374759. PMID 35962036.
  147. ^ Son M, Lee Y, Zorigt B, Kobayashi Y, Park J, Lee S, Kim S, Lee KY (2022). "A new juvenile Yamaceratops (Dinosauria, Ceratopsia) from the Javkhlant Formation (Upper Cretaceous) of Mongolia". PeerJ. 10: e13176. doi:10.7717/peerj.13176. PMC 8992648. PMID 35402094.
  148. ^ Baag SJ, Lee YN (2022). "Bone histology on Koreaceratops hwaseongensis (Dinosauria: Ceratopsia) from the Lower Cretaceous of South Korea". Cretaceous Research. 134: Article 105150. Bibcode:2022CrRes.13405150B. doi:10.1016/j.cretres.2022.105150. S2CID 246340350.
  149. ^ Chen X, Tan K, Lu L, Ji S (2022). "Occurrence of Protoceratops hellenikorhinus (Ceratopsia: Protoceratopsidae) in Alxa region, western Inner Mongolia, China". Acta Geologica Sinica. 96 (11): 3722–3732. doi:10.19762/j.cnki.dizhixuebao.2022302.
  150. ^ Scott SH, Ryan MJ, Evans DC (2022). "Postcranial description of Wendiceratops pinhornensis and a taphonomic analysis of the oldest monodominant ceratopsid bonebed". The Anatomical Record. 306 (7): 1824–1841. doi:10.1002/ar.25045. PMID 36001492. S2CID 251766450.
  151. ^ Fiorillo AR, Tykoski RS (2022). "Paleobiological inferences from paleopathological occurrences in the Arctic ceratopsian Pachyrhinosaurus perotorum". The Anatomical Record. 306 (7): 1697–1711. doi:10.1002/ar.25104. PMID 36271743. S2CID 253063565.
  152. ^ Mallon JC, Holmes RB, Bamforth EL, Schumann D (2022). "The record of Torosaurus (Ornithischia: Ceratopsidae) in Canada and its taxonomic implications". Zoological Journal of the Linnean Society. 195 (1): 157–171. doi:10.1093/zoolinnean/zlab120.
  153. ^ D'Anastasio R, Cilli J, Bacchia F, Fanti F, Gobbo G, Capasso L (2022). "Histological and chemical diagnosis of a combat lesion in Triceratops". Scientific Reports. 12 (1): Article number 3941. Bibcode:2022NatSR..12.3941D. doi:10.1038/s41598-022-08033-2. PMC 8990019. PMID 35393445.
  154. ^ de Rooij J, van der Lubbe JH, Verdegaal S, Hulscher M, Tooms D, Kaskes P, Verhage O, Portanger L, Schulp AS (2022). "Stable isotope record of Triceratops from a mass accumulation (Lance Formation, Wyoming, USA) provides insights into Triceratops behaviour and ecology". Palaeogeography, Palaeoclimatology, Palaeoecology. 607. 111274. Bibcode:2022PPP...60711274D. doi:10.1016/j.palaeo.2022.111274.
  155. ^ Fiorillo AR, McCarthy PJ, Kobayashi Y, Suarez MB (2022). "Cretaceous Dinosaurs across Alaska Show the Role of Paleoclimate in Structuring Ancient Large-Herbivore Populations". Geosciences. 12 (4): Article 161. Bibcode:2022Geosc..12..161F. doi:10.3390/geosciences12040161.
  156. ^ Schade M, Stumpf S, Kriwet J, Kettler C, Pfaff C (2022). "Neuroanatomy of the nodosaurid Struthiosaurus austriacus (Dinosauria: Thyreophora) supports potential ecological differentiations within Ankylosauria". Scientific Reports. 12 (1): Article number 144. Bibcode:2022NatSR..12..144S. doi:10.1038/s41598-021-03599-9. PMC 8741922. PMID 34996895.
  157. ^ Frauenfelder TG, Bell PR, Brougham T, Bevitt JJ, Bicknell RD, Kear BP, Wroe S, Campione NE (2022). "New Ankylosaurian Cranial Remains From the Lower Cretaceous (Upper Albian) Toolebuc Formation of Queensland, Australia". Frontiers in Earth Science. 10: Article 803505. doi:10.3389/feart.2022.803505.
  158. ^ Schade M, Ansorge J (2022). "New thyreophoran dinosaur material from the Early Jurassic of northeastern Germany". PalZ. 96 (2): 303–311. Bibcode:2022PalZ...96..303S. doi:10.1007/s12542-022-00605-x.
  159. ^ Arbour VM, Zanno LE, Evans DC (2022). "Palaeopathological evidence for intraspecific combat in ankylosaurid dinosaurs". Biology Letters. 18 (12). 20220404. doi:10.1098/rsbl.2022.0404. PMC 9727678. PMID 36475422.
  160. ^ Tan, Kai; Chen, Xiaoyun; Lu, Liwu; Ji, Shu'an (2022). "记内蒙古阿拉善右旗晚白垩世的绘龙属(甲龙科)化石" [On the Ankylosaurid Pinacosaurus from the Late Cretaceous of Alxa Right Banner, Inner Mongolia] (PDF). Acta Geological Sinica (in Chinese). 96 (11): 3733–3740. doi:10.19762/j.cnki.dizhixuebao.2022301.
  161. ^ Aureliano T, Ghilardi AM, Müller RT, Kerber L, Pretto FA, Fernandes MA, Ricardi-Branco F, Wedel MJ (2022). "The absence of an invasive air sac system in the earliest dinosaurs suggests multiple origins of vertebral pneumaticity". Scientific Reports. 12 (1). 20844. Bibcode:2022NatSR..1220844A. doi:10.1038/s41598-022-25067-8. PMC 9734174. PMID 36494410.
  162. ^ Lefebvre R, Houssaye A, Mallison H, Cornette R, Allain R (2022). "A path to gigantism: Three-dimensional study of the sauropodomorph limb long bone shape variation in the context of the emergence of the sauropod bauplan". Journal of Anatomy. 241 (2): 297–336. doi:10.1111/joa.13646. PMC 9296025. PMID 35249216. S2CID 247251261.
  163. ^ Otero, A.; Hutchinson, J. R. (2022). "Body Size Evolution and Locomotion in Sauropodomorpha: What the South American Record Tells Us". In A. Otero; J. L. Carballido; D. Pol (eds.). South American Sauropodomorph Dinosaurs. Springer Earth System Sciences. Springer. pp. 443–472. doi:10.1007/978-3-030-95959-3_12. ISBN 978-3-030-95958-6.
  164. ^ Dunne EM, Farnsworth A, Benson RB, Godoy PL, Greene SE, Valdes PJ, Lunt DJ, Butler RJ (2022). "Climatic controls on the ecological ascendancy of dinosaurs". Current Biology. 33 (1): 206–214.e4. doi:10.1016/j.cub.2022.11.064. hdl:1983/aea1ae86-2260-4d4d-a9d5-0fe38a0f470e. PMID 36528026. S2CID 254754419.
  165. ^ Langer, M. C.; Marsola, J. C. A.; Müller, R. T.; Bronzati, M.; Bittencourt, J. S.; Apaldetti, C.; Ezcurra, M. D. (2022). "The Early Radiation of Sauropodomorphs in the Carnian (Late Triassic) of South America". In A. Otero; J. L. Carballido; D. Pol (eds.). South American Sauropodomorph Dinosaurs. Springer Earth System Sciences. Springer. pp. 1–49. doi:10.1007/978-3-030-95959-3_1. ISBN 978-3-030-95958-6.
  166. ^ Müller RT (2022). "On the Presence and Shape of Anterolateral Scars in the Ontogenetic Series of Femora for Two Early Sauropodomorph Dinosaurs from the Upper Triassic of Brazil". Paleontological Research. 26 (1): 1–7. doi:10.2517/PR200001. S2CID 245488555.
  167. ^ Damke LV, Bem FP, Doering M, Piovesan TR, Müller RT (2022). "The elongated neck of sauropodomorph dinosaurs evolved gradually". The Anatomical Record. 307 (4): 1060–1070. doi:10.1002/ar.25107. PMID 36285778. S2CID 253119546.
  168. ^ Pérez LM, Otero A, Alonso Muruaga PJ, Gaetano LC, Leardi JM, Krapovickas V, Poiré DG (2022). "Multiproxy taphonomic analysis in the Los Colorados Formation (Upper Triassic), Ischigualasto-Villa Unión Basin, Argentina: A case study through sauropodomorph remains". Journal of South American Earth Sciences. 118: 103925. Bibcode:2022JSAES.11803925P. doi:10.1016/j.jsames.2022.103925. S2CID 250413071.
  169. ^ Ballell A, Rayfield EJ, Benton MJ (2022). "Walking with early dinosaurs: appendicular myology of the Late Triassic sauropodomorph Thecodontosaurus antiquus". Royal Society Open Science. 9 (1): Article ID 211356. Bibcode:2022RSOS....911356B. doi:10.1098/rsos.211356. PMC 8767213. PMID 35116154.
  170. ^ Müller RT, Garcia MS (2022). "A sauropodomorph (Dinosauria, Saurischia) specimen from the Upper Triassic of southern Brazil and the early increase in size in Sauropodomorpha". Journal of Vertebrate Paleontology. 41 (4). doi:10.1080/02724634.2021.2002879. S2CID 246787098.
  171. ^ Jannel A, Salisbury SW, Panagiotopoulou O (2022). "Softening the steps to gigantism in sauropod dinosaurs through the evolution of a pedal pad". Science Advances. 8 (32): eabm8280. Bibcode:2022SciA....8M8280J. doi:10.1126/sciadv.abm8280. PMC 9365286. PMID 35947665.
  172. ^ Chapelle KE, Barrett PM, Choiniere JN, Botha J (2022). "Interelemental osteohistological variation in Massospondylus carinatus and its implications for locomotion". PeerJ. 10: e13918. doi:10.7717/peerj.13918. PMC 9512004. PMID 36172498.
  173. ^ Apaldetti, C.; Martínez, R. N. (2022). "South American Non-Gravisaurian Sauropodiformes and the Early Trend Towards Gigantism". In A. Otero; J. L. Carballido; D. Pol (eds.). South American Sauropodomorph Dinosaurs. Springer Earth System Sciences. Springer. pp. 93–130. doi:10.1007/978-3-030-95959-3_3. ISBN 978-3-030-95958-6.
  174. ^ Otero A, Pol D (2022). "Ontogenetic changes in the postcranial skeleton of Mussaurus patagonicus (Dinosauria, Sauropodomorpha) and their impact on the phylogenetic relationships of early sauropodomorphs". Journal of Systematic Palaeontology. 19 (21): 1467–1516. doi:10.1080/14772019.2022.2039311. S2CID 248189985.
  175. ^ Cerda IA, Pol D, Otero A, Chinsamy A (2022). "Palaeobiology of the early sauropodomorph Mussaurus patagonicus inferred from its long bone histology". Palaeontology. 65 (4): e12614. Bibcode:2022Palgy..6512614C. doi:10.1111/pala.12614. S2CID 251181122.
  176. ^ Botha J, Choiniere JN, Benson RB (2022). "Rapid growth preceded gigantism in sauropodomorph evolution". Current Biology. 32 (20): 4501–4507.e2. Bibcode:2022CBio...32E4501B. doi:10.1016/j.cub.2022.08.031. PMID 36084648. S2CID 252125009.
  177. ^ Taylor MP (2022). "Almost all known sauropod necks are incomplete and distorted". PeerJ. 10: e12810. doi:10.7717/peerj.12810. PMC 8793732. PMID 35127288.
  178. ^ Sciscio L, Belvedere M, Meyer CA, Marty D (2022). "Sauropod Trackway Morphometrics: An Exploratory Study Using Highway A16 Excavation at the Courtedoux-Tchâfouè Track Site (Late Jurassic, NW Switzerland)". Frontiers in Earth Science. 10: Article 805442. doi:10.3389/feart.2022.805442. hdl:2158/1258082.
  179. ^ Mocho P, Pérez-García A, Codrea VA (2022). "New titanosaurian caudal remains provide insights on the sauropod diversity of the Hațeg Island (Romania) during the Late Cretaceous". Historical Biology: An International Journal of Paleobiology. 35 (10): 1881–1916. doi:10.1080/08912963.2022.2125807. S2CID 253695318.
  180. ^ Zhang XQ, Li N, Xie Y, Li DQ, You HL (2022). "Redescription of the dorsal vertebrae of the mamenchisaurid sauropod Xinjiangtitan shanshanesis Wu et al. 2013". Historical Biology: An International Journal of Paleobiology. 36: 1–27. doi:10.1080/08912963.2022.2147428. S2CID 254532485.
  181. ^ Sharma A, Singh S, Satheesh SR (2022). "The first turiasaurian sauropod of India reported from the Middle Jurassic (Bathonian) sediments of Jaisalmer Basin, Rajasthan, India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 304 (2): 187–203. doi:10.1127/njgpa/2022/1064. S2CID 249030842.
  182. ^ Conti S, Tschopp E, Mateus O, Zanoni A, Masarati P, Sala G (2022). "Multibody analysis and soft tissue strength refute supersonic dinosaur tail". Scientific Reports. 12 (1). 19245. doi:10.1038/s41598-022-21633-2. PMC 9732322. PMID 36482175.
  183. ^ Peterson JE, Lovelace D, Connely M, McHugh JB (2022). "A novel feeding mechanism of diplodocid sauropods revealed in an Apatosaurine skull from the Upper Jurassic Nail Quarry (Morrison Formation) at Como Bluff, Wyoming, USA". Palaeontologia Electronica. 25 (2): Article number 25.2.a21. doi:10.26879/1216.
  184. ^ Woodruff DC, Wolff ED, Wedel MJ, Dennison S, Witmer LM (2022). "The first occurrence of an avian-style respiratory infection in a non-avian dinosaur". Scientific Reports. 12 (1): Article number 1954. Bibcode:2022NatSR..12.1954W. doi:10.1038/s41598-022-05761-3. PMC 8831536. PMID 35145134.
  185. ^ Price JR, Whitlock JA (2022). "Dental histology of Diplodocus (Sauropoda, Diplodocoidea)". Journal of Vertebrate Paleontology. 42 (1): e2099745. Bibcode:2022JVPal..42E9745P. doi:10.1080/02724634.2022.2099745. S2CID 251358519.
  186. ^ Windholz GJ, Cerda IA, Carballido JL, Rauhut OW (2022). "Palaeobiological inferences for the South American dicraeosaurid Brachytrachelopan mesai (Dinosauria; Sauropoda) based on bone histology of the holotype". Historical Biology: An International Journal of Paleobiology. 35 (10): 1871–1880. doi:10.1080/08912963.2022.2124373. S2CID 252614158.
  187. ^ Windholz GJ, Coria RA, Bellardini F, Baiano MA, Pino D, Ortega F, Currie PJ (2022). "On a dicraeosaurid specimen from the Mulichinco Formation (Valanginian, Neuquén Basin) of Argentina and phylogenetic relationships of the South American dicraeosaurids (Sauropoda, Diplodocoidea)". Comptes Rendus Palevol. 21 (45): 991–1019. doi:10.5852/cr-palevol2022v21a45. S2CID 255055245.
  188. ^ Cerda IA, Novas FE, Carballido JL, Salgado L (2022). "Osteohistology of the hyperelongate hemispinous processes of Amargasaurus cazaui (Dinosauria: Sauropoda): Implications for soft tissue reconstruction and functional significance". Journal of Anatomy. 240 (6): 1005–1019. doi:10.1111/joa.13659. PMC 9119615. PMID 35332552. S2CID 247677750.
  189. ^ Windholz GJ, Carballido JL, Coria RA, Zurriaguz VL, Rauhut OW (2022). "How pneumatic were the presacral vertebrae of dicraeosaurid (Sauropoda: Diplodocoidea) dinosaurs?". Biological Journal of the Linnean Society. 138: 103–120. doi:10.1093/biolinnean/blac131.
  190. ^ Bellardini F, Filippi LS, Garrido AC, Carballido JL, Baiano MA (2022-07-13). "New rebbachisaurid remains from the Huincul Formation (Middle Cenomanian–Early Turonian) of the Central Neuquén Basin, Patagonia, Argentina". Publicación Electrónica de la Asociación Paleontológica Argentina. 22 (2): 1–24. doi:10.5710/PEAPA.22.04.2022.419. ISSN 2469-0228. S2CID 250967721.
  191. ^ Bellardini F, Coria RA, Windholz GJ, Martinelli AG, Baiano MA (2022). "Revisiting the Early Cretaceous sauropod Agustinia ligabuei (Dinosauria: Diplodocoidea) from southern Neuquén Basin (Patagonia, Argentina), with implications on the early evolution of rebbachisaurids". Historical Biology: An International Journal of Paleobiology. 35 (12): 2408–2434. doi:10.1080/08912963.2022.2142911. S2CID 253558422.
  192. ^ Tan C, Yu HD, Ren XX, Dai H, M QY, Xiong C, Zhao ZQ, You HL (2023). "Pathological ribs in sauropod dinosaurs from the Middle Jurassic of Yunyang, Chongqing, Southwestern China". Historical Biology. 35 (4): 475–482. Bibcode:2023HBio...35..475T. doi:10.1080/08912963.2022.2045979. S2CID 247172509.
  193. ^ Ren XX, Jiang S, Wang XR, Peng GZ, Ye Y, Jia L, You HL (2022). "Re-examination of Dashanpusaurus dongi (Sauropoda: Macronaria) supports an early Middle Jurassic global distribution of neosauropod dinosaurs". Palaeogeography, Palaeoclimatology, Palaeoecology. 610. 111318. doi:10.1016/j.palaeo.2022.111318.
  194. ^ Ren XX, Jiang S, Wang XR, Peng GZ, Ye Y, King L, You HL (2022). "Osteology of Dashanpusaurus dongi (Sauropoda: Macronaria) and new evolutionary evidence from Middle Jurassic Chinese sauropods". Journal of Systematic Palaeontology. 20 (1). 2132886. doi:10.1080/14772019.2022.2132886. S2CID 253690952.
  195. ^ Schade M, Knötschke N, Hörnig MK, Paetzel C, Stumpf S (2022). "Neurovascular anatomy of dwarf dinosaur implies precociality in sauropods". eLife. 11. e82190. doi:10.7554/eLife.82190. PMC 9767461. PMID 36537069.
  196. ^ Carballido, J. L.; Bellardini, F.; Salgado, L. (2022). "The Rise of Non-Titanosaur Macronarians in South America". In A. Otero; J. L. Carballido; D. Pol (eds.). South American Sauropodomorph Dinosaurs. Springer Earth System Sciences. Springer. pp. 237–268. doi:10.1007/978-3-030-95959-3_7. ISBN 978-3-030-95958-6.
  197. ^ Pittman M, Enriquez NJ, Bell PR, Kaye TG, Upchurch P (2022). "Newly detected data from Haestasaurus and review of sauropod skin morphology suggests Early Jurassic origin of skin papillae". Communications Biology. 5 (1): Article number 122. doi:10.1038/s42003-022-03062-z. PMC 8831608. PMID 35145214.
  198. ^ Bellardini F, Coria RA, Pino DA, Windholz GJ, Baiano MA, Martinelli AG (2022). "Osteology and phylogenetic relationships of Ligabuesaurus leanzai (Dinosauria: Sauropoda) from the Early Cretaceous of the Neuquén Basin, Patagonia, Argentina". Zoological Journal of the Linnean Society. 196 (4). zlac003. doi:10.1093/zoolinnean/zlac003.
  199. ^ Sakaki H, Winkler DE, Kubo T, Hirayama R, Uno H, Miyata S, Endo H, Sasaki K, Takisawa T, Kubo MO (2022). "Non-occlusal dental microwear texture analysis of a titanosauriform sauropod dinosaur from the Upper Cretaceous (Turonian) Tamagawa Formation, northeastern Japan". Cretaceous Research. 136: Article 105218. Bibcode:2022CrRes.13605218S. doi:10.1016/j.cretres.2022.105218. S2CID 247919470.
  200. ^ Kaikaew S, Suteethorn V, Deesri U, Suteethorn S (2022). "The endocast of Phuwiangosaurus sirindhornae from the Lower Cretaceous of Thailand". Cretaceous Research. 144. 105434. doi:10.1016/j.cretres.2022.105434. S2CID 254175949.
  201. ^ Averianov AO, Lopatin AV (2022). "New Data on Sibirotitan, a Titanosauriform Sauropod from the Early Cretaceous of Western Siberia". Doklady Earth Sciences. 506 (1): 650–653. Bibcode:2022DokES.506..650A. doi:10.1134/S1028334X22700040. S2CID 252442250.
  202. ^ Carballido, J. L.; Otero, A.; Mannion, P. D.; Salgado, L.; Pérez Moreno, A. (2022). "Titanosauria: A Critical Reappraisal of Its Systematics and the Relevance of the South American Record". In A. Otero; J. L. Carballido; D. Pol (eds.). South American Sauropodomorph Dinosaurs. Springer Earth System Sciences. Springer. pp. 269–298. doi:10.1007/978-3-030-95959-3_8. ISBN 978-3-030-95958-6.
  203. ^ Páramo A, Escaso F, Mocho P, Marcos-Fernández F, Sanz JL, Ortega F (2022). "3D Geometric morphometrics of the hind limb in the titanosaur sauropods from Lo Hueco (Cuenca, Spain)". Cretaceous Research. 134: Article 105147. Bibcode:2022CrRes.13405147P. doi:10.1016/j.cretres.2022.105147.
  204. ^ Reis LF, Ghilardi AM, Fernandes MA (2022). "Bite traces in a sauropod rib from the Upper Cretaceous São José do Rio Preto Formation (Bauru Basin), Brazil". Historical Biology. 35 (8): 1329–1340. doi:10.1080/08912963.2022.2090248. S2CID 250595443.
  205. ^ Tomaselli MB, Ortiz David LB, González Riga BJ, Coria JP, Mercado CR, Guerra M, Tiviroli GS (2022). "New titanosaurian sauropod tracks with exceptionally well-preserved claw impressions from the Upper Cretaceous of Argentina". Cretaceous Research. 129: Article 104990. Bibcode:2022CrRes.12904990T. doi:10.1016/j.cretres.2021.104990. S2CID 238695181.
  206. ^ Fiorelli LE, Martinelli AG, da Silva JI, Hechenleitner EM, Soares MV, Silva Junior JC, da Silva JC, Borges ÉM, Ribeiro LC, Marconato A, Basilici G, Marino TS (2022). "First titanosaur dinosaur nesting site from the Late Cretaceous of Brazil". Scientific Reports. 12 (1): Article number 5091. Bibcode:2022NatSR..12.5091F. doi:10.1038/s41598-022-09125-9. PMC 8948192. PMID 35332244.
  207. ^ Soto, Matías; Montenegro, Felipe; Mesa, Valeria; Perea, Daniel (2022). "Sauropod (Dinosauria: Saurischia) remains from the Mercedes and Asencio formations (sensu Bossi, 1966), Upper Cretaceous of Uruguay". Cretaceous Research. 131: 105072. Bibcode:2022CrRes.13105072S. doi:10.1016/j.cretres.2021.105072. S2CID 243484691.
  208. ^ Dhiman H, Verma V, Prasad GV (2022). "First ovum-in-ovo pathological titanosaurid egg throws light on the reproductive biology of sauropod dinosaurs". Scientific Reports. 12 (1): Article number 9362. Bibcode:2022NatSR..12.9362D. doi:10.1038/s41598-022-13257-3. PMC 9174186. PMID 35672433.
  209. ^ Santucci, R. M.; Filippi, L. S. (2022). "Last Titans: Titanosaurs from the Campanian–Maastrichtian Age". In A. Otero; J. L. Carballido; D. Pol (eds.). South American Sauropodomorph Dinosaurs. Springer Earth System Sciences. Springer. pp. 341–391. doi:10.1007/978-3-030-95959-3_10. ISBN 978-3-030-95958-6.
  210. ^ Lourembam RS, Dhiman H, Prasad GV (2022). "Preservation of Membrana Testacea in titanosaurid dinosaur eggshells from the Upper Cretaceous Deccan volcano-sedimentary strata of Central India". Geological Magazine. 160 (2): 361–371. doi:10.1017/S0016756822000978. S2CID 256773672.
  211. ^ Rigby SL, Poropat SF, Mannion PD, Pentland AH, Sloan T, Rumbold SJ, Webster CB, Elliott DA (2022). "A juvenile Diamantinasaurus matildae (Dinosauria: Titanosauria) from the Upper Cretaceous Winton Formation of Queensland, Australia, with implications for sauropod ontogeny". Journal of Vertebrate Paleontology. 41 (6): e2047991. doi:10.1080/02724634.2021.2047991. S2CID 248187418.
  212. ^ Poropat SF, Frauenfelder TG, Mannion PD, Rigby SL, Pentland AH, Sloan T, Elliott DA (2022). "Sauropod dinosaur teeth from the lower Upper Cretaceous Winton Formation of Queensland, Australia and the global record of early titanosauriforms". Royal Society Open Science. 9 (7): Article ID 220381. Bibcode:2022RSOS....920381P. doi:10.1098/rsos.220381. PMC 9277269. PMID 35845848.
  213. ^ Preuschoft H (2022). "Mechanical analysis of the wide-hipped titanosaur Savannasaurus elliottorum". Palaeobiodiversity and Palaeoenvironments. 103 (2): 407–411. doi:10.1007/s12549-022-00527-1. S2CID 248837159.
  214. ^ Pal S, Ayyasami K (2022-06-27). "The lost titan of Cauvery". Geology Today. 38 (3): 112–116. Bibcode:2022GeolT..38..112P. doi:10.1111/gto.12390. ISSN 0266-6979. S2CID 250056201.
  215. ^ Voegele KK, Bonnan MF, Siegler S, Langel CR, Lacovara KJ (2022). "Constraining Morphologies of Soft Tissues in Extinct Vertebrates Using Multibody Dynamic Simulations: A Case Study on Articular Cartilage of the Sauropod Dreadnoughtus". Frontiers in Earth Science. 10: 786247. Bibcode:2022FrEaS..10.6247V. doi:10.3389/feart.2022.786247.
  216. ^ Schroeter ER, Ullmann PV, Macauley K, Ash RD, Zheng W, Schweitzer MH, Lacovara KJ (2022). "Soft-Tissue, Rare Earth Element, and Molecular Analyses of Dreadnoughtus schrani, an Exceptionally Complete Titanosaur from Argentina". Biology. 11 (8): Article 1158. doi:10.3390/biology11081158. PMC 9404821. PMID 36009785.
  217. ^ Pérez Moreno A, Otero, Carballido JL, Salgado L, Calvo JO (2022). "The appendicular skeleton of Rinconsaurus caudamirus (Sauropoda: Titanosauria) from the Upper Cretaceous of Patagonia, Argentina". Cretaceous Research. 142. 105389. doi:10.1016/j.cretres.2022.105389. S2CID 252799392.
  218. ^ Brum AS, Bandeira KL, Sayão JM, Campos DA, Kellner AW (2022). "Microstructure of axial bones of lithostrotian titanosaurs (Neosauropoda: Sauropodomorpha) shows extended fast-growing phase". Cretaceous Research. 136: Article 105220. Bibcode:2022CrRes.13605220B. doi:10.1016/j.cretres.2022.105220. S2CID 247911738.
  219. ^ Averianov AO, Lopatin AV (2022). "New data on Late Cretaceous sauropods from the Bostobe Formation of northeastern Aral Sea region (Kazakhstan)". Doklady Rossijskoj Akademii Nauk. Nauki O Zemle. 503 (1): 32–35. doi:10.31857/S2686739722030045. S2CID 246694849.
  220. ^ Lallensack JN, Falkingham PL (2022). "A new method to calculate limb phase from trackways reveals gaits of sauropod dinosaurs". Current Biology. 32 (7): 1635–1640.e4. doi:10.1016/j.cub.2015.04.041. PMID 35240050.
  221. ^ Fernández, M. S.; Vila, B.; Moreno-Azanza, M. (2022). "Eggs, Nests, and Reproductive Biology of Sauropodomorph Dinosaurs from South America". In A. Otero; J. L. Carballido; D. Pol (eds.). South American Sauropodomorph Dinosaurs. Springer Earth System Sciences. Springer. pp. 393–441. doi:10.1007/978-3-030-95959-3_11. ISBN 978-3-030-95958-6.
  222. ^ Keller T, Or D (2022). "Farm vehicles approaching weights of sauropods exceed safe mechanical limits for soil functioning". Proceedings of the National Academy of Sciences of the United States of America. 119 (21): e2117699119. Bibcode:2022PNAS..11917699K. doi:10.1073/pnas.2117699119. PMC 9173810. PMID 35576469. S2CID 248831820.
  223. ^ Hendrickx C, Bell PR, Pittman M, Milner AR, Cuesta E, O'Connor J, Loewen M, Currie PJ, Mateus O, Kaye TG, Delcourt R (2022). "Morphology and distribution of scales, dermal ossifications, and other non-feather integumentary structures in non-avialan theropod dinosaurs". Biological Reviews. 97 (3): 960–1004. doi:10.1111/brv.12829. PMID 34991180. S2CID 245820672.
  224. ^ Farlow JO, Coroian D, Currie PJ, Foster JR, Mallon JC, Therrien F (2022). ""Dragons" on the landscape: Modeling the abundance of large carnivorous dinosaurs of the Upper Jurassic Morrison Formation (USA) and the Upper Cretaceous Dinosaur Park Formation (Canada)". The Anatomical Record. 306 (7): 1669–1696. doi:10.1002/ar.25024. PMID 35815600. S2CID 250422526.
  225. ^ Lockley MG, Kim SH, Kim KS, Bae SM, Kim JY, Xing L (2022). "A high-density Grallator assemblage from the Haman Formation (Cretaceous), Korea: implications for Cretaceous distribution of grallatorids in east Asia". Historical Biology: An International Journal of Paleobiology. 34 (12): 2430–2438. Bibcode:2022HBio...34.2430L. doi:10.1080/08912963.2021.2018687. S2CID 245683766.
  226. ^ Herrera-Castillo CM, Moratalla JJ, Belaústegui Z, Marugán-Lobón J, Martín-Abad H, Nebreda SM, López-Archilla AI, Buscalioni AD (2022). "A theropod trackway providing evidence of a pathological foot from the exceptional locality of Las Hoyas (upper Barremian, Serranía de Cuenca, Spain)". PLOS ONE. 17 (4): e0264406. Bibcode:2022PLoSO..1764406H. doi:10.1371/journal.pone.0264406. PMC 8985934. PMID 35385476.
  227. ^ Monvoisin E, Allain R, Buffetaut E, Picot L (2022). "New data on the theropod diversity from the Middle to Late Jurassic of the Vaches Noires cliffs (Normandy, France)". Geodiversitas. 44 (12): 385–415. doi:10.5252/geodiversitas2022v44a12 (inactive 31 January 2024).{{cite journal}}: CS1 maint: DOI inactive as of January 2024 (link)
  228. ^ Ueda H, Sakai Y, Manabe M, Tsuihiji T, Isaji S, Okura M (2022). "Morphometric and Cladistic Analyses of a Theropod Tooth from the Itsuki Formation of the Tetori Group in the Kuzuryu District, Ono City, Fukui Prefecture, Japan". Paleontological Research. 27 (1): 51–72. doi:10.2517/PR210002. S2CID 252684199.
  229. ^ Isasmendi E, Torices A, Canudo JI, Currie PJ, Pereda-Suberbiola X (2022). "Upper Cretaceous European theropod palaeobiodiversity, palaeobiogeography and the intra-Maastrichtian faunal turnover: new contributions from the Iberian fossil site of Laño" (PDF). Papers in Palaeontology. 8 (1): e1419. Bibcode:2022PPal....8E1419I. doi:10.1002/spp2.1419. hdl:10810/56781. S2CID 246028305.
  230. ^ Davis SN, Soto-Acuña S, Fernández RA, Amudeo J, Leppe MA, Rubilar-Rogers D, Vargas AO, Clarke JA (2022). "New records of Theropoda from a Late Cretaceous (Campanian-Maastrichtian) locality in the Magallanes-Austral Basin, Patagonia, and insights into end Cretaceous theropod diversity". Journal of South American Earth Sciences. 122. 104163. doi:10.1016/j.jsames.2022.104163. S2CID 254850180.
  231. ^ Padian K (2022). "Why tyrannosaurid forelimbs were so short: An integrative hypothesis". Acta Palaeontologica Polonica. 67 (1): 63–76. doi:10.4202/app.00921.2021. S2CID 247871788.
  232. ^ Barta DE, Griffin CT, Norell MA (2022). "Osteohistology of a Triassic dinosaur population reveals highly variable growth trajectories typified early dinosaur ontogeny". Scientific Reports. 12 (1). 17321. Bibcode:2022NatSR..1217321B. doi:10.1038/s41598-022-22216-x. PMC 9569331. PMID 36243889.
  233. ^ De Oliveira LM, Oliveira ÉV, Fambrini GL (2022). "The first dinosaur from the Jurassic Aliança Formation of northeastern Brazil, west Gondwana: A basal Neotheropoda and its age and paleobiogeographical significance". Journal of South American Earth Sciences. 116: Article 103835. Bibcode:2022JSAES.11603835D. doi:10.1016/j.jsames.2022.103835. S2CID 248596028.
  234. ^ Salem BS, Lamanna MC, O'Connor PM, El-Qot GM, Shaker F, Thabet WA, El-Sayed S, Sallam HM (2022). "First definitive record of Abelisauridae (Theropoda: Ceratosauria) from the Cretaceous Bahariya Formation, Bahariya Oasis, Western Desert of Egypt". Royal Society Open Science. 9 (6): Article ID 220106. Bibcode:2022RSOS....920106S. doi:10.1098/rsos.220106. PMC 9174736. PMID 35706658.
  235. ^ Delcourt R, Langer MC (2022). "A small abelisaurid caudal vertebra from the Bauru Basin, Presidente Prudente Formation (Late Cretaceous), Brazil adds information about the diversity and distribution of theropods in central South America". Journal of South American Earth Sciences. 116: Article 103879. Bibcode:2022JSAES.11603879D. doi:10.1016/j.jsames.2022.103879.
  236. ^ Cerroni MA, Baiano MA, Canale JI, Agnolín FL, Otero A, Novas FE (2022). "Appendicular osteology of Skorpiovenator bustingorryi (Theropoda, Abelisauridae) with comments on phylogenetic features of abelisaurids". Journal of Systematic Palaeontology. 20 (1). 2093661. doi:10.1080/14772019.2022.2093661. S2CID 252489465.
  237. ^ Gianechini F, Filippi L, Méndez A, Garrido A (2022). "A non-furileusaurian caudal vertebra from the Bajo de la Carpa Formation (Upper Cretaceous, Santonian) and morphological variation in the tail of Abelisauridae". Publicación Electrónica de la Asociación Paleontológica Argentina. 22 (2): 58–70. doi:10.5710/PEAPA.15.10.2022.438. S2CID 255298504.
  238. ^ Baiano MA, Cerda IA (2022). "Osteohistology of Aucasaurus garridoi (Dinosauria, Theropoda, Abelisauridae): inferences on lifestyle and growth strategy". Historical Biology: An International Journal of Paleobiology. 35 (5): 693–704. doi:10.1080/08912963.2022.2063052. S2CID 248288065.
  239. ^ Fabbri M, Navalón G, Benson R, Pol D, O'Connor J, Bhullar BS, Erickson GM, Norell MA, Orkney A, Lamanna MC, Zouhri S, Becker J, Emke A, Dal Sasso C, Bindellini G, Maganuco S, Auditore M, Ibrahim N (2022-03-23). "Subaqueous foraging among carnivorous dinosaurs". Nature. 603 (7903): 852–857. Bibcode:2022Natur.603..852F. doi:10.1038/s41586-022-04528-0. PMID 35322229. S2CID 247630374.
  240. ^ Isasmendi E, Navarro-Lorbés P, Sáez-Benito P, Viera LI, Torices A, Pereda-Suberbiola X (2022). "New contributions to the skull anatomy of spinosaurid theropods: Baryonychinae maxilla from the Early Cretaceous of Igea (La Rioja, Spain)". Historical Biology: An International Journal of Paleobiology. 35 (6): 909–923. doi:10.1080/08912963.2022.2069019. S2CID 248906462.
  241. ^ Barker CT, Lockwood JA, Naish D, Brown S, Hart A, Tulloch E, Gostling NJ (2022). "A European giant: a large spinosaurid (Dinosauria: Theropoda) from the Vectis Formation (Wealden Group, Early Cretaceous), UK". PeerJ. 10: e13543. doi:10.7717/peerj.13543. PMC 9188774. PMID 35702254.
  242. ^ Sereno PC, Myhrvold N, Henderson DM, Fish FE, Vidal D, Baumgart SL, Keillor TM, Formoso KK, Conroy LL (2022). "Spinosaurus is not an aquatic dinosaur". eLife. 11. e80092. doi:10.7554/eLife.80092. PMC 9711522. PMID 36448670.
  243. ^ Winkler DE, Kubo T, Kubo MO, Kaiser TM, Tütken T (2022). "First application of dental microwear texture analysis to infer theropod feeding ecology". Palaeontology. 65 (6). e12632. Bibcode:2022Palgy..6512632W. doi:10.1111/pala.12632. S2CID 254522907.
  244. ^ Paterna A, Cau A (2022). "New giant theropod material from the Kem Kem Compound Assemblage (Morocco) with implications on the diversity of the mid-Cretaceous carcharodontosaurids from North Africa". Historical Biology: An International Journal of Paleobiology. 35 (11): 2036–2044. doi:10.1080/08912963.2022.2131406. S2CID 252856791.
  245. ^ Naish D, Cau A (2022-07-07). "The osteology and affinities of Eotyrannus lengi, a tyrannosauroid theropod from the Wealden Supergroup of southern England". PeerJ. 10: e12727. doi:10.7717/peerj.12727. ISSN 2167-8359. PMC 9271276. PMID 35821895.
  246. ^ Kotevski J, Poropat SF (2022). "On the first dinosaur tooth reported from Australia (Theropoda: Megaraptoridae)". Alcheringa: An Australasian Journal of Palaeontology. 46 (2): 174–179. Bibcode:2022Alch...46..174K. doi:10.1080/03115518.2022.2071463. S2CID 249053647.
  247. ^ Yu K, Bolotsky I, Sun W, Gao Y, Shen F, Wu W (2022). "First discovery of theropod teeth from the Nenjiang Formation (early Campanian) in the Songliao Basin, northeast China". Historical Biology. 35 (7): 1166–1174. doi:10.1080/08912963.2022.2084692. S2CID 259139886.
  248. ^ Berrocal-Casero M, Alcalde-Fuentes MR, Audije-Gil J, Sevilla García P (2022). "Theropod teeth from the upper Barremian (Lower Cretaceous) of Vadillos-1, Spain". Cretaceous Research. 142. 105392. doi:10.1016/j.cretres.2022.105392. hdl:10486/705325. S2CID 252833617.
  249. ^ Krumenacker LJ, Zanno LE, Sues HD (2022). "A partial tyrannosauroid femur from the mid-Cretaceous Wayan Formation of eastern Idaho, USA". Journal of Paleontology. 96 (6): 1336–1345. Bibcode:2022JPal...96.1336K. doi:10.1017/jpa.2022.42. S2CID 249530217.
  250. ^ Surring LA, Burns ME, Snively E, Barta DE, Holtz TR, Russell AP, Witmer LM, Currie PJ (2022). "Consilient evidence affirms expansive stabilizing ligaments in the tyrannosaurid foot". Vertebrate Anatomy Morphology Palaeontology. 10 (1): 49–64. doi:10.18435/vamp29387. S2CID 254215780.
  251. ^ Voris JT, Zelenitsky DK, Therrien F, Ridgely RC, Currie PJ, Witmer LM (2022). "Two exceptionally preserved juvenile specimens of Gorgosaurus libratus (Tyrannosauridae, Albertosaurinae) provide new insight into the timing of ontogenetic changes in tyrannosaurids". Journal of Vertebrate Paleontology. 41 (6): e2041651. doi:10.1080/02724634.2021.2041651. S2CID 248197540.
  252. ^ Yun CG (2022). "Frontal bone anatomy of Teratophoneus curriei (Theropoda: Tyrannosauridae) from the Upper Cretaceous Kaiparowits Formation of Utah" (PDF). Acta Palaeontologica Romaniae. 18 (1): 51–64. doi:10.35463/j.apr.2022.01.06.
  253. ^ Foster W, Brusatte SL, Carr TD, Williamson TE, Yi L, Lü J (2022). "The cranial anatomy of the long-snouted tyrannosaurid dinosaur Qianzhousaurus sinensis from the Upper Cretaceous of China". Journal of Vertebrate Paleontology. 41 (4): e1999251. doi:10.1080/02724634.2021.1999251. hdl:20.500.11820/85571b5c-0e63-4caa-963a-f16a42514319. S2CID 246799243.
  254. ^ Kim SH, Lee YN, Park JY, Lee S, Winkler DA, Jacobs LL, Barsbold R (2022). "A new species of Osteoglossomorpha (Actinopterygii: Teleostei) from the Upper Cretaceous Nemegt Formation of Mongolia: paleobiological and paleobiogeographic implications". Cretaceous Research. 135: Article 105214. Bibcode:2022CrRes.13505214K. doi:10.1016/j.cretres.2022.105214. S2CID 247637952.
  255. ^ Yun CG, Peters GF, Currie PJ (2022). "Allometric growth in the frontals of the Mongolian theropod dinosaur Tarbosaurus bataar". Acta Palaeontologica Polonica. 67 (3): 601–615. doi:10.4202/app.00947.2021. S2CID 251699699.
  256. ^ Bouabdellah F, Lessner E, Benoit J (2022). "The rostral neurovascular system of Tyrannosaurus rex". Palaeontologia Electronica. 25 (1): Article number 25.1.1.a3. doi:10.26879/1178.
  257. ^ Rothschild B, O'Connor J, and Lozado M (2022). "Closer examination does not support infection as cause for enigmatic Tyrannosaurus rex mandibular pathologies". Cretaceous Research. 140. 105353. Bibcode:2022CrRes.14005353R. doi:10.1016/j.cretres.2022.105353. ISSN 0195-6671. S2CID 252055157.
  258. ^ Tsogtbaatar C, Cullen T, Phillips G, Rolke R, Zanno LE (2022). "Large-bodied ornithomimosaurs inhabited Appalachia during the Late Cretaceous of North America". PLOS ONE. 17 (10): e0266648. Bibcode:2022PLoSO..1766648T. doi:10.1371/journal.pone.0266648. PMC 9581415. PMID 36260601.
  259. ^ Xi Y, Sullivan C, Tan Q, Xu X (2022). "New ornithomimosaurian (Dinosauria: Theropoda) pelvis from the Upper Cretaceous Erlian Formation of Nei Mongol, north China". Cretaceous Research. 137: Article 105234. Bibcode:2022CrRes.13705234Y. doi:10.1016/j.cretres.2022.105234. S2CID 248351038.
  260. ^ Chinzorig T, Beguesse KA, Canoville A, Phillips G, Zanno LE (2022). "Chronic fracture and osteomyelitis in a large-bodied ornithomimosaur with implications for the identification of unusual endosteal bone in the fossil record". The Anatomical Record. 306 (7): 1864–1879. doi:10.1002/ar.25069. PMID 36193654. S2CID 252694074.
  261. ^ Nottrodt RE (2022). "First articulated ornithomimid specimens from the upper Maastrichtian Scollard Formation of Alberta, Canada". Journal of Vertebrate Paleontology. 41 (5): e2019754. doi:10.1080/02724634.2021.2019754. S2CID 247311332.
  262. ^ Guinard G (2022). "The forelimbs of Alvarezsauroidea (Dinosauria: Theropoda): insights from evolutionary teratology". Journal of Morphology. 283 (9): 1257–1272. doi:10.1002/jmor.21500. PMID 35915891. S2CID 251254776.
  263. ^ Averianov AO, Lopatin AV (2022). "A re-appraisal of Parvicursor remotus from the Late Cretaceous of Mongolia: implications for the phylogeny and taxonomy of alvarezsaurid theropod dinosaurs". Journal of Systematic Palaeontology. 19 (16): 1097–1128. doi:10.1080/14772019.2021.2013965. S2CID 247222017.
  264. ^ Meade LE, Ma W (2022). "Cranial muscle reconstructions quantify adaptation for high bite forces in Oviraptorosauria". Scientific Reports. 12 (1): Article number 3010. Bibcode:2022NatSR..12.3010M. doi:10.1038/s41598-022-06910-4. PMC 8863891. PMID 35194096.
  265. ^ Yang, T.-Z.; Sander, P. M. (2022). "The reproductive biology of oviraptorosaurs: a synthetic view". In S-C. Chang; D. Zheng (eds.). Mesozoic Biological Events and Ecosystems in East Asia. The Geological Society of London. doi:10.1144/SP521-2021-181. {{cite book}}: |journal= ignored (help)
  266. ^ Xing L, Niu K, Ma W, Zelenitsky DK, Yang TR, Brusatte SL (2021). "An exquisitely preserved in-ovo theropod dinosaur embryo sheds light on avian-like prehatching postures". iScience. 25 (1): Article 103516. doi:10.1016/j.isci.2021.103516. PMC 8786642. PMID 35106456. S2CID 245398552.
  267. ^ Deeming DC, Kundrát M (2022). "Interpretation of fossil embryos requires reasonable assessment of developmental age". Paleobiology. 49: 68–76. doi:10.1017/pab.2022.21. S2CID 250938817.
  268. ^ Averianov AO, Lopatin AV (2022). "First Discovery of Theropod Dinosaurs of the Family Avimimidae in the Late Cretaceous of Central Asia". Doklady Earth Sciences. 506 (2): 775–777. Bibcode:2022DokES.506..775A. doi:10.1134/S1028334X22700210. S2CID 253480874.
  269. ^ Wei X, Kundrát M, Xu L, Ma W, Wu Y, Chang H, Zhang J, Zhou X (2022). "A new subadult specimen of oviraptorid Yulong mini (Theropoda: Oviraptorosauria) from the Upper Cretaceous Qiupa Formation of Luanchuan, central China". Cretaceous Research. 138: Article 105261. Bibcode:2022CrRes.13805261W. doi:10.1016/j.cretres.2022.105261. S2CID 248977151.
  270. ^ Serrano-Brañas CI, Espinosa-Chávez B, Maccracken SA, Barrera Guevara D, Torres-Rodriguez E (2022). "First record of caenagnathid dinosaurs (Theropoda, Oviraptorosauria) from the Cerro del Pueblo Formation (Campanian, Upper Cretaceous), Coahuila, Mexico". Journal of South American Earth Sciences. 119. 104046. Bibcode:2022JSAES.11904046S. doi:10.1016/j.jsames.2022.104046.
  271. ^ Pei, R.; Xu, X. (2022). "New prospects on the cranial evolution of non-avialan paravian theropods based on geometric morphometrics" (PDF). In S-C. Chang; D. Zheng (eds.). Mesozoic Biological Events and Ecosystems in East Asia. Vol. 521. The Geological Society of London. pp. 35–44. doi:10.1144/SP521-2021-179. S2CID 247095472. {{cite book}}: |journal= ignored (help)
  272. ^ Brilhante NS, Constância de França T, Castro F, Sanches da Costa L, Currie PJ, Kugland de Azevedo SA, Delcourt R (2022). "A dromaeosaurid-like claw from the Upper Cretaceous of southern France". Historical Biology: An International Journal of Paleobiology. 34 (11): 2195–2204. Bibcode:2022HBio...34.2195S. doi:10.1080/08912963.2021.2007243. S2CID 247378741.
  273. ^ Sues HD, Averianov A, Britt BB (2022). "A giant dromaeosaurid theropod from the Upper Cretaceous (Turonian) Bissekty Formation of Uzbekistan and the status of Ulughbegsaurus uzbekistanensis". Geological Magazine. 160 (2): 355–360. doi:10.1017/S0016756822000954. S2CID 255025983.
  274. ^ Hone DW, Dececchi TA, Sullivan C, Xu X, Larsson HC (2022). "Generalist diet of Microraptor zhaoianus included mammals". Journal of Vertebrate Paleontology. 42 (2). e2144337. Bibcode:2022JVPal..42E4337H. doi:10.1080/02724634.2022.2144337. S2CID 255051527.
  275. ^ Powers MJ, Fabbri M, Doschak MR, Bhullar BA, Evans DC, Norell MA, Currie PJ (2022). "A new hypothesis of eudromaeosaurian evolution: CT scans assist in testing and constructing morphological characters". Journal of Vertebrate Paleontology. 41 (5): e2010087. doi:10.1080/02724634.2021.2010087. S2CID 247039404.
  276. ^ Jasinski SE, Sullivan RM, Carter AM, Johnson EH, Dalman SG, Zariwala J, Currie PJ (2022). "Osteology and reassessment of Dineobellator notohesperus, a southern eudromaeosaur (Theropoda: Dromaeosauridae: Eudromaeosauria) from the latest Cretaceous of New Mexico". The Anatomical Record. 306 (7): 1712–1756. doi:10.1002/ar.25103. PMID 36342817. S2CID 253382718.
  277. ^ Letizio LA, Bertini RJ, Medeiros MA (2022-07-16). "New evidence of putative Unenlagiinae (Deinonychosauria, Theropoda) in the São Luís-Grajaú Basin, Albian–Cenomanian, State of Maranhão, Brazil". Revista Brasileira de Paleontologia (in Portuguese). 25 (2): 157–164. doi:10.4072/rbp.2022.2.05.
  278. ^ Yu K, Wu W, Bolotsky I, Zhang X, Shen F, Godefroit P (2022). "The first occurrence of Troodon-morphotype tooth in Jiayin, Heilongjiang, Northeast China". Global Geology (English Edition). 25 (3): 133–145. doi:10.3969/j.issn.1673-9736.2022.03.01.
  279. ^ Noto CR, D'Amore DC, Drumheller SK, Adams TL (2022). "A newly recognized theropod assemblage from the Lewisville Formation (Woodbine Group; Cenomanian) and its implications for understanding Late Cretaceous Appalachian terrestrial ecosystems". PeerJ. 10: e12782. doi:10.7717/peerj.12782. PMC 8796713. PMID 35127286.
  280. ^ a b Worthy TH, Scofield RP, Salisbury SW, Hand SJ, De Pietri VL, Archer M (2022). "Two new neoavian taxa with contrasting palaeobiogeographical implications from the early Miocene St Bathans Fauna, New Zealand". Journal of Ornithology. 163 (3): 643–658. doi:10.1007/s10336-022-01981-6. S2CID 247993690.
  281. ^ a b c d e f g h i j k l Agnolín, Federico L. (2022). "New fossil birds from the Miocene of Patagonia, Argentina". Poeyana. 513: 1–43. ISSN 2410-7492.
  282. ^ Mayr G, Lechner T, Böhme M (2023). "Nearly complete leg of an unusual, shelduck-sized anseriform bird from the earliest late Miocene hominid locality Hammerschmiede (Germany)". Historical Biology: An International Journal of Paleobiology. 35 (4): 465–474. Bibcode:2023HBio...35..465M. doi:10.1080/08912963.2022.2045285. S2CID 247310405.
  283. ^ Matsuoka H, Hasegawa Y (2022). "Annakacygna, a new genus for two remarkable flightless swans(Aves, Anatidae, Cygnini)from the Miocene of Gunma, central Japan: With a note on the birds' food niche shift and specialization of wings for parental care action" (PDF). Bulletin of Gunma Museum of Natural History. 26: 1–30.
  284. ^ Wang X, Ju S, Wu W, Liu Y, Guo Z, Ji Q (2022). "The first enantiornithine bird from the Lower Cretaceous Longjiang Formation in the Great Khingan Range of Inner Mongolia". Acta Geologica Sinica. 96 (2): 337–348. doi:10.19762/j.cnki.dizhixuebao.2022114. Archived from the original on 2022-01-21. Retrieved 2022-01-21.
  285. ^ Ksepka DT, Early CM, Dzikiewicz K, Balanoff AM (2022). "Osteology and neuroanatomy of a phasianid (Aves: Galliformes) from the Miocene of Nebraska". Journal of Paleontology. 97: 223–242. doi:10.1017/jpa.2022.80. S2CID 253033983.
  286. ^ Mayr G, Kitchener AC (2024). "The Picocoraciades (hoopoes, rollers, woodpeckers, and allies) from the early Eocene London Clay of Walton-on-the-Naze". PalZ. doi:10.1007/s12542-024-00687-9.
  287. ^ Wang R, Hu D, Zhang M, Wang S, Zhao Q, Sullivan C, Xu X (2022). "A new confuciusornithid bird with a secondary epiphyseal ossification reveals phylogenetic changes in confuciusornithid flight mode". Communications Biology. 5 (1). 1398. doi:10.1038/s42003-022-04316-6. PMC 9772404. PMID 36543908.
  288. ^ Mather EK, Lee MS, Worthy TH (2022). "A new look at an old Australian raptor places "Taphaetus" lacertosus de Vis 1905 in the Old World vultures (Accipitridae: Aegypiinae)". Zootaxa. 5168 (1): 1–23. doi:10.11646/zootaxa.5168.1.1. PMID 36101304. S2CID 250938004.
  289. ^ Mayr G, Kitchener AC (2022). "New fossils from the London Clay show that the Eocene Masillaraptoridae are stem group representatives of falcons (Aves, Falconiformes)". Journal of Vertebrate Paleontology. 41 (6): e2083515. doi:10.1080/02724634.2021.2083515. S2CID 250402777.
  290. ^ Degrange FJ (2022). "A new species of Dryornis (Aves, Cathartiformes) from the Santa Cruz Formation (lower Miocene), Patagonia, Argentina". Journal of Vertebrate Paleontology. 41 (5): e2008411. doi:10.1080/02724634.2021.2008411. S2CID 246833070.
  291. ^ Hume JP (2022). "A new subfossil ground thrush (Turdidae: Geokichla) from Mauritius, Mascarene Islands". Bulletin of the British Ornithologists' Club. 142 (4): 388–403. doi:10.25226/bboc.v142i4.2022.a2. S2CID 254367025.
  292. ^ a b Sánchez-Marco A (2022). "Two new Gypaetinae (Accipitridae, Aves) from the late Miocene of Spain". Historical Biology: An International Journal of Paleobiology. 34 (8): 1534–1543. Bibcode:2022HBio...34.1534S. doi:10.1080/08912963.2022.2053117. S2CID 247605500.
  293. ^ Benito J, Kuo PC, Widrig KE, Jagt JW, Field DJ (2022). "Cretaceous ornithurine supports a neognathous crown bird ancestor". Nature. 612 (7938): 100–105. Bibcode:2022Natur.612..100B. doi:10.1038/s41586-022-05445-y. PMID 36450906. S2CID 254099216.
  294. ^ a b c Mayr G, Kitchener AC (2022). "New species from the early Eocene London Clay suggest an undetected early Eocene diversity of the Leptosomiformes, an avian clade that includes a living fossil from Madagascar". Palaeobiodiversity and Palaeoenvironments. 103 (3): 585–608. doi:10.1007/s12549-022-00560-0. S2CID 254333827.
  295. ^ a b c d Mayr G, Kitchener AC (2022). "Psittacopedids and zygodactylids: The diverse and species-rich psittacopasserine birds from the early Eocene London Clay of Walton-on-the-Naze (Essex, UK)". Historical Biology: An International Journal of Paleobiology. 35 (12): 2372–2395. doi:10.1080/08912963.2022.2141629. S2CID 253538776.
  296. ^ Li Z, Stidham TA, Zheng X, Wang Y, Zhao T, Deng T, Zhou Z (2022). "Early evolution of diurnal habits in owls (Aves, Strigiformes) documented by a new and exquisitely preserved Miocene owl fossil from China". Proceedings of the National Academy of Sciences of the United States of America. 119 (15): e2119217119. Bibcode:2022PNAS..11919217L. doi:10.1073/pnas.2119217119. PMC 9169863. PMID 35344399. S2CID 247776318.
  297. ^ Tennyson AJ, Greer L, Lubbe P, Marx FG, Richards MD, Giovanardi S, Rawlence NJ (2022). "A New Species of Large Duck (Aves: Anatidae) from the Miocene of New Zealand". Taxonomy. 2 (1): 136–144. doi:10.3390/taxonomy2010011.
  298. ^ Wang X, Cau A, Luo X, Kundrát M, Wu W, Ju S, Guo Z, Liu Y, Ji Q (2022). "A new bohaiornithid-like bird from the Lower Cretaceous of China fills a gap in enantiornithine disparity". Journal of Paleontology. 96 (4): 961–976. Bibcode:2022JPal...96..961W. doi:10.1017/jpa.2022.12. S2CID 247432530.
  299. ^ Mayr G, Kitchener AC (2022). "Oldest fossil loon documents a pronounced ecomorphological shift in the evolution of gaviiform birds". Zoological Journal of the Linnean Society. 196 (4): 1431–1450. doi:10.1093/zoolinnean/zlac045.
  300. ^ Worthy TH, Scofield RP, Hand SJ, De Pietri VL, Archer M (2022). "A swan-sized fossil anatid (Aves: Anatidae) from the early Miocene St Bathans Fauna of New Zealand". Zootaxa. 5168 (1): 39–50. doi:10.11646/zootaxa.5168.1.3. PMID 36101302. S2CID 250940807.
  301. ^ Kessler J, Horváth I (2022). "Presentation of so far undetermined bird remains from the Pliocene of Beremend 26 and Csarnóta 2 and 4 (Baranya county, South Hungary)". Ornis Hungarica. 30 (1): 47–68. doi:10.2478/orhu-2022-0004. S2CID 250415267.
  302. ^ Zelenkov NV (2022). "Fossil stone shelduck (Tadorna petrina) and shoveler (Spatula praeclypeata sp. nov.)—the oldest Early Pleistocene ducks (Aves: Anatidae) from Crimea". Paleontological Journal. 56 (6): 682–692. Bibcode:2022PalJ...56..682Z. doi:10.1134/S0031030122060132. S2CID 254248562.
  303. ^ Herrera, Gerardo Álvarez; Agnolín, Federico; Rozadilla, Sebastián; Lo Coco, Gastón E.; Manabe, Makoto; Tsuihiji, Takanobu; Novas, Fernando E. (2022-12-16). "New enantiornithine bird from the uppermost Cretaceous (Maastrichtian) of southern Patagonia, Argentina". Cretaceous Research. 144: 105452. doi:10.1016/j.cretres.2022.105452. ISSN 0195-6671. S2CID 254804249.
  304. ^ Mayr G, Kitchener AC (2022). "Early Eocene fossil illuminates the ancestral (diurnal) ecomorphology of owls and documents a mosaic evolution of the strigiform body plan". Ibis. 165 (1): 231–247. doi:10.1111/ibi.13125. S2CID 251455832.
  305. ^ Griffin CT, Botelho JF, Hanson M, Fabbri M, Smith-Paredes D, Carney RM, Norell MA, Egawa S, Gatesy SM, Rowe TB, Elsey RM, Nesbitt SJ, Bhullar BA (2022). "The developing bird pelvis passes through ancestral dinosaurian conditions". Nature. 608 (7922): 346–352. Bibcode:2022Natur.608..346G. doi:10.1038/s41586-022-04982-w. PMID 35896745. S2CID 251131903.
  306. ^ Kuznetsov AN, Panyutina AA (2022). "Where was WAIR in avian flight evolution?". Biological Journal of the Linnean Society. 137 (1): 145–156. doi:10.1093/biolinnean/blac019.
  307. ^ Heers AM, Tobalske BW, Jackson BE, Dial KP (2022). "Where is WAIR (and other wing-assisted behaviours)? Essentially everywhere: a response to Kuznetsov and Panyutina (2022)". Biological Journal of the Linnean Society. 137 (1): 157–162. doi:10.1093/biolinnean/blac078.
  308. ^ Hu H, Wang Y, McDonald PG, Wroe S, O'Connor JK, Bjarnason A, Bevitt JJ, Yin X, Zheng X, Zhou Z, Benson RB (2022). "Earliest evidence for fruit consumption and potential seed dispersal by birds". eLife. 11: e74751. doi:10.7554/eLife.74751. PMC 9381037. PMID 35971758.
  309. ^ Hu H, Wang Y, Fabbri M, O'Connor JK, Mcdonald PG, Wroe S, Yin X, Zheng X, Zhou Z, Benson RB (2022). "Cranial osteology and palaeobiology of the Early Cretaceous bird Jeholornis prima (Aves: Jeholornithiformes)". Zoological Journal of the Linnean Society. 198: 93–112. doi:10.1093/zoolinnean/zlac089.
  310. ^ Marugán-Lobón J, Chiappe LM (2022). "Ontogenetic niche shifts in the Mesozoic bird Confuciusornis sanctus". Current Biology. 32 (7): 1629–1634.e2. Bibcode:2022CBio...32E1629M. doi:10.1016/j.cub.2022.02.010. PMID 35240049. S2CID 247198993.
  311. ^ He X, Zhao T, Hu J, Li X, Wang X, Zheng X, Pan Y (2022). "Taphonomic properties of the foot claw sheath from an Early Cretaceous bird specimen Confuciusornis sanctus". Cretaceous Research. 144. 105453. doi:10.1016/j.cretres.2022.105453. S2CID 255032856.
  312. ^ Wang S, Ma Y, Wu Q, Wang M, Hu D, Sullivan C, Xu X (2022). "Digital restoration of the pectoral girdles of two Early Cretaceous birds, and implications for early flight evolution". eLife. 11: e76086. doi:10.7554/eLife.76086. PMC 9023055. PMID 35356889.
  313. ^ Chiappe LM, Navalón G, Martinelli AG, Nava W, Field DJ (2022). "Fossil basicranium clarifies the origin of the avian central nervous system and inner ear". Proceedings of the Royal Society B: Biological Sciences. 289 (1983). 20221398. doi:10.1098/rspb.2022.1398. PMC 9515635. PMID 36168759.
  314. ^ Miller CV, Pittman M, Wang X, Zheng X, Bright JA (2022). "Diet of Mesozoic toothed birds (Longipterygidae) inferred from quantitative analysis of extant avian diet proxies". BMC Biology. 20 (1): Article number 101. doi:10.1186/s12915-022-01294-3. PMC 9097364. PMID 35550084.
  315. ^ Wang M, Stidham TA, O'Connor JK, Zhou Z (2022). "Insight into the evolutionary assemblage of cranial kinesis from a Cretaceous bird". eLife. 11: e81337. doi:10.7554/eLife.81337. PMC 9721616. PMID 36469022.
  316. ^ Zhao T, Li ZH, Zhang H, Pan YH (2022). "Scales in the Early Cretaceous bird Gansus from China provide evidence on the evolution of avian scales". Journal of Palaeogeography. 11 (4): 640–652. Bibcode:2022JPalG..11..640Z. doi:10.1016/j.jop.2022.08.002.
  317. ^ Bell A, Chiappe LM (2022). "The Hesperornithiformes: A Review of the Diversity, Distribution, and Ecology of the Earliest Diving Birds". Diversity. 14 (4): Article 267. doi:10.3390/d14040267.
  318. ^ Benito J, Chen A, Wilson LE, Bhullar BS, Burnham D, Field DJ (2022). "Forty new specimens of Ichthyornis provide unprecedented insight into the postcranial morphology of crownward stem group birds". PeerJ. 10. e13919. doi:10.7717/peerj.13919. PMC 9762251. PMID 36545383.
  319. ^ Widrig K, Field DJ (2022). "The Evolution and Fossil Record of Palaeognathous Birds (Neornithes: Palaeognathae)". Diversity. 14 (2): Article 105. doi:10.3390/d14020105.
  320. ^ Buffetaut E (2022). "The Enigmatic Avian Oogenus Psammornis: A Review of Stratigraphic Evidence". Diversity. 14 (2): Article 123. doi:10.3390/d14020123.
  321. ^ Demarchi B, Mackie M, Li Z, Deng T, Collins MJ, Clarke J (2022). "Survival of mineral-bound peptides into the Miocene". eLife. 11. e82849. doi:10.7554/eLife.82849. PMC 9803351. PMID 36533893.
  322. ^ Buffetaut E (2022). "The First-Named Fossil Ostrich: A Revision of Struthio asiaticus, from the Siwaliks of India". Diversity. 14 (10). 860. doi:10.3390/d14100860.
  323. ^ Acosta Hospitaleche C, Picasso MB (2022). "About the alleged record of the Rheidae Diogenornis in the Cenozoic of Argentina: new interpretations". Historical Biology: An International Journal of Paleobiology. 35 (9): 1515–1521. doi:10.1080/08912963.2022.2098489. S2CID 250373917.
  324. ^ Picasso, Mariana B.J.; Acosta Hospitaleche, Carolina; Mosto, María C. (2022). "An overview and update of South American and Antarctic fossil rheidae and putative ratitae (Aves, Palaeognathae)". Journal of South American Earth Sciences. 115: 103731. Bibcode:2022JSAES.11503731P. doi:10.1016/j.jsames.2022.103731. S2CID 246723279.
  325. ^ Massonne, Tobias; Böhme, Madelaine; Mayr, Gerald (2022). "A tarsometatarsus from the upper Eocene Na Duong Basin—the first Palaeogene fossil bird from Vietnam". Alcheringa: An Australasian Journal of Palaeontology. 46 (3–4): 291–296. Bibcode:2022Alch...46..291M. doi:10.1080/03115518.2022.2126010. S2CID 252882691.
  326. ^ Demarchi B, Stiller J, Grealy A, Mackie M, Deng Y, Gilbert T, Clarke J, Legendre LJ, Boano R, Sicheritz-Pontén T, Magee J, Zhang G, Bunce M, Collins MJ, Miller G (2022). "Ancient proteins resolve controversy over the identity of Genyornis eggshell". Proceedings of the National Academy of Sciences of the United States of America. 119 (43): e2109326119. Bibcode:2022PNAS..11909326D. doi:10.1073/pnas.2109326119. PMC 9995833. PMID 35609205. S2CID 249045755.
  327. ^ Chinsamy A, Handley WD, Worthy TH (2022). "Osteohistology of Dromornis stirtoni (Aves: Dromornithidae) and the biological implications of the bone histology of the Australian mihirung birds". The Anatomical Record. 306 (7): 1842–1863. doi:10.1002/ar.25047. PMID 37314297. S2CID 251655836.
  328. ^ Santiago De Mendoza R, Gómez RO (2022). "Ecomorphology of the tarsometatarsus of waterfowl (Anseriformes) based on geometric morphometrics and its application to fossils". The Anatomical Record. 305 (11): 3243–3253. doi:10.1002/ar.24891. PMID 35132811. S2CID 246651718.
  329. ^ Nomenjanahary ZB, Hansford JP, Samonds KE, Ranivoharimanana L, Goodman SM (2022). "Sexual dimorphism and interpopulation size variation in the extinct Malagasy waterbird Alopochen sirabensis (Anseriformes: Anatidae)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 304 (2): 115–124. doi:10.1127/njgpa/2022/1059. S2CID 249027977.
  330. ^ Álvarez-Herrera GP, Agnolín FL, Méndez C, Luna C, Cuaranta P, Contreras S, Zurita AE (2022). "The Northernmost record of the goose genus Chloephaga (Eyton, 1838) (Aves, Anatidae) and its biogeographical implications". Journal of South American Earth Sciences. 119: Article 103988. Bibcode:2022JSAES.11903988A. doi:10.1016/j.jsames.2022.103988. S2CID 251705841.
  331. ^ Riamon S, Balouet JC, Rolland-Guillard J, Salaviale C, Guenser P, Steyer JS, Louchart A (2022). "The endocast of the insular and extinct Sylviornis neocaledoniae (Aves, Galliformes), reveals insights into its sensory specializations and its twilight ecology". Scientific Reports. 12 (1). 21185. Bibcode:2022NatSR..1221185R. doi:10.1038/s41598-022-14829-z. PMC 9729198. PMID 36477415.
  332. ^ McDonald HG, Steadman DW (2022). "Fossil Flamingo (Phoenicopteriformes) from the Miocene (Hemingfordian) of Southern California, USA". Historical Biology: An International Journal of Paleobiology. 35 (9): 1574–1582. doi:10.1080/08912963.2022.2103694. S2CID 251046831.
  333. ^ De Pietri VL, Mayr G, Costeur L, Scofield RP (2022). "New records of buttonquails (Aves, Charadriiformes, Turnicidae) from the Oligocene and Miocene of Europe". Comptes Rendus Palevol. 21 (11): 235–244. doi:10.5852/cr-palevol2022v21a11. S2CID 247912905.
  334. ^ Aotsuka, Keiichi; Endo, Hideki (2022). "A Fossil Humerus of Pliocene Alcidae (Aves: Charadriiformes) from the Fukagawa Group in Hokkaido, Japan". Ornithological Science. 21 (1). doi:10.2326/osj.21.79. S2CID 246475596.
  335. ^ Pelegrín, Jonathan S.; Acosta Hospitaleche, Carolina (2022). "Evolutionary and Biogeographical History of Penguins (Sphenisciformes): Review of the Dispersal Patterns and Adaptations in a Geologic and Paleoecological Context". Diversity. 14 (4): 255. doi:10.3390/d14040255.
  336. ^ Jadwiszczak, Piotr; Svensson-Marcial, Anders; Mörs, Thomas (2022). "An integrative insight into the synsacral canal of fossil and extant Antarctic penguins". Integrative Zoology. 18 (2): 237–253. doi:10.1111/1749-4877.12689. PMID 36239550. S2CID 252896535.
  337. ^ Aotsuka K, Isaji S, Endo H (2022). "An Avian Sternum (Aves: Procellariidae) from the Pleistocene Ichijiku Formation in Chiba, Japan". Paleontological Research. 26 (1): 74–86. doi:10.2517/PR200007. S2CID 245478620.
  338. ^ Meijer HJ, Sutikna T, Wahyu Saptomo E, Tocheri MW (2022). "More bones of Leptoptilos robustus from Flores reveal new insights into giant marabou stork paleobiology and biogeography". Royal Society Open Science. 9 (7): Article ID 220435. Bibcode:2022RSOS....920435M. doi:10.1098/rsos.220435. PMC 9277297. PMID 35845853.
  339. ^ Ericson PG, Irestedt M, Zuccon D, Larsson P, Tison JL, Emslie SD, Götherström A, Hume JP, Werdelin L, Qu Y (2022). "A 14,000-year-old genome sheds light on the evolution and extinction of a Pleistocene vulture". Communications Biology. 5 (1): Article number 857. doi:10.1038/s42003-022-03811-0. PMC 9399080. PMID 35999361.
  340. ^ Agnolín, Federico L.; Brissón Egli, Federico; Álvarez–Herrera, Gerardo (2022). "Large condor (Aves, Cathartidae) from the Late Pleistocene of Buenos Aires Province, Argentina". Historical Biology. 35 (9): 1742–1747. doi:10.1080/08912963.2022.2114080. S2CID 252029249.
  341. ^ Balassa D, Prothero DR, Syverson VJ (2022). "Stasis in Red-Tailed Hawks (Buteo jamaicensis) from La Brea Tar Pits during the last glacial-interglacial cycle". New Mexico Museum of Natural History and Science Bulletin. 90: 29–33.
  342. ^ Cleaveland C, Prothero DR, Syverson VJ (2022). "How did La Brea Swainson's hawks (Buteo swainsoni) respond to climate change?". New Mexico Museum of Natural History and Science Bulletin. 90: 111–117.
  343. ^ DeAnda E, Prothero DR, Marriott K (2022). "How did Grinnell's hawk-eagle (Spizaetus grinnelli) from La Brea Tar Pits respond to climate change?". New Mexico Museum of Natural History and Science Bulletin. 90: 155–160.
  344. ^ Olson, Sara; Prothero, Donald R.; Balassa, Daniella; Syverson, Val J. P. (2022). "Stasis In Neophrontops americanus (Egyptian Vultures) From La Brea Tar Pits During The Last Glacial-Interglacial Cycle". New Mexico Museum of Natural History and Science Bulletin. 90: 325–330.
  345. ^ Marriott, Katherine; Prothero, Donald R.; Watmore, Kristin (2022). "How did Northern Harriers (Circus hudsonius) from La Brea Tar Pits respond to climate change during the last glacial-interglacial cycle?". New Mexico Museum of Natural History and Science Bulletin. 90: 303–308.
  346. ^ Santos SM, Prothero DR, Marriott K (2022). "Stasis in the extinct La Brea Fragile Eagle (Buteogallus fragilis) in response to climate change". New Mexico Museum of Natural History and Science Bulletin. 90: 365–370.
  347. ^ Watmore KI, Prothero DR (2022). "The effects of climate change on ferruginous hawks (Buteo regalis) from La Brea Tar Pits during the last glacial-interclacial cycle". New Mexico Museum of Natural History and Science Bulletin. 90: 455–460.
  348. ^ Pavia, Marco; Cavagna, Simona; Pellegrino, Irene; Pellegrino, Luca; Carnevale, Giorgio (2022). "The oldest fossil record of Buteo (Aves, Accipitridae) from the Late Miocene of Italy and its evolutionary implications". Bollettino della Società Paleontologica Italiana. 61 (2): 145–158. doi:10.4435/BSPI.2022.11.
  349. ^ Boev, Zlatozar (2022). "Additional material of Buteo spassovi Boev & Kovachev, 1998 from the Upper Miocene locality Hadzhidimovo (Blagoevgrad region, SW Bulgaria)". Geologica Balcanica. 51 (3): 17–19. doi:10.52321/GeolBalc.51.3.17. S2CID 253832729.
  350. ^ Gala M, Laroulandie V, Lenoble A (2022). "Evidence of a Late Holocene giant barn owl (Aves: Strigiformes: Tytonidae) in Guadeloupe". Journal of Caribbean Ornithology. 35: 40–46. doi:10.55431/jco.2022.35.40-46. S2CID 248872440.
  351. ^ Boev, Zlatozar; Mikkola, Heimo (2022). "First Pleistocene Record of Great Grey Owl (Strix nebulosa Forster, 1772) in Bulgaria". Proceedings of the Bulgarian Academy of Sciences. 75 (5): 680–685. doi:10.7546/CRABS.2022.05.07.
  352. ^ Steell, Elizabeth M.; Nguyen, Jacqueline M. T.; Benson, Roger B. J.; Field, Daniel J. (2022). "Comparative anatomy of the passerine carpometacarpus helps illuminate the early fossil record of crown Passeriformes". Journal of Anatomy. 242 (3): 495–509. doi:10.1111/joa.13761. PMC 9919509. PMID 36070480. S2CID 252121499.
  353. ^ Pavia M, Val A, Carrera L, Steininger CM (2022). "Fossil birds from Cooper's D aid in reconstructing the Early Pleistocene paleoenvironment in the Cradle of Humankind (Gauteng, South Africa)". Journal of Human Evolution. 167: Article 103185. doi:10.1016/j.jhevol.2022.103185. PMID 35489251. S2CID 248478028.
  354. ^ Núñez-Lahuerta, Carmen; Galán, Julia; Cuenca-Bescós, Gloria; García-Medrano, Paula; Cáceres, Isabel (2022). "A bird assemblage across the MIS 9/8 boundary: The Middle Pleistocene of Galería (Atapuerca)". Quaternary Science Reviews. 293: 107708. Bibcode:2022QSRv..29307708N. doi:10.1016/j.quascirev.2022.107708. S2CID 251872034.
  355. ^ Rufà, Anna; Blasco, Ruth; Menschel, Melissa; Pokines, James T. (2022). "The avian remains from El Juyo, Lower Magdalenian Cantabrian Spain". Journal of Archaeological Science: Reports. 46: 103713. Bibcode:2022JArSR..46j3713R. doi:10.1016/j.jasrep.2022.103713. hdl:10400.1/19007. S2CID 253391522.
  356. ^ Boev, Zlatozar (2022). "Late Pleistocene and Early Holocene Birds of Northern Vietnam (Caves Dieu and Maxa I, Thanh Hoa Province)—Paleornithological Results of the Joint Bulgarian-Vietnamese Archaeological Expeditions, 1985–1991 (Paleoavifaunal Research)". Quaternary. 5 (3): 31. doi:10.3390/quat5030031.
  357. ^ Suárez, William (2022). "Catalogue of Cuban fossil and subfossil birds". Bulletin of the British Ornithologists' Club. 142 (1). doi:10.25226/bboc.v142i1.2022.a3. S2CID 247385749.
  358. ^ Carrera L, Pavia M, Varela S (2022). "Birds adapted to cold conditions show greater changes in range size related to past climatic oscillations than temperate birds". Scientific Reports. 12 (1): Article number 10813. Bibcode:2022NatSR..1210813C. doi:10.1038/s41598-022-14972-7. PMC 9233688. PMID 35752649.
  359. ^ Pole M (2022). "A vanished ecosystem: Sophora microphylla (Kōwhai) dominated forest recorded in mid-late Holocene rock shelters in Central Otago, New Zealand". Palaeontologia Electronica. 25 (1): Article number 25.1.1A. doi:10.26879/1169.
  360. ^ Verry AJ, Mitchell KJ, Rawlence NJ (2022). "Genetic evidence for post-glacial expansion from a southern refugium in the eastern moa (Emeus crassus)". Biology Letters. 18 (5): Article ID 20220013. doi:10.1098/rsbl.2022.0013. PMC 9091836. PMID 35538842.
  361. ^ Canoville A, Chinsamy A, Angst D (2022). "New Comparative Data on the Long Bone Microstructure of Large Extant and Extinct Flightless Birds". Diversity. 14 (4): Article 298. doi:10.3390/d14040298. hdl:11427/36380.
  362. ^ Yang Z, Benton MJ, Hone DW, Xu X, McNamara ME, Jiang B (2022). "Allometric analysis sheds light on the systematics and ontogeny of anurognathid pterosaurs". Journal of Vertebrate Paleontology. 41 (5): e2028796. doi:10.1080/02724634.2021.2028796. hdl:10468/12968. S2CID 247262846.
  363. ^ Jagielska, N.; O'Sullivan, M.; Funston, G. F.; Butler, I. B.; Challands, T. J.; Clark, N. D. L.; Fraser, N. C.; Penny, A.; Ross, D. A.; Wilkinson, M.; Brusatte, S. L. (2022). "A skeleton from the Middle Jurassic of Scotland illuminates an earlier origin of large pterosaurs". Current Biology. 32 (6): 1446–1453.e4. Bibcode:2022CBio...32E1446J. doi:10.1016/j.cub.2022.01.073. hdl:10023/27028. PMID 35196508. S2CID 247013664.
  364. ^ Fernandes AE, Mateus O, Andres B, Polcyn MJ, Schulp AS, Gonçalves AO, Jacobs LL (2022). "Pterosaurs from the Late Cretaceous of Angola". Diversity. 14 (9). 741. doi:10.3390/d14090741. hdl:10362/145845.
  365. ^ Xu Y, Jiang S, Wang X (2022). "A new istiodactylid pterosaur, Lingyuanopterus camposi gen. et sp. nov., from the Jiufotang Formation of western Liaoning, China". PeerJ. 10: e13819. doi:10.7717/peerj.13819. PMC 9336611. PMID 35910775.
  366. ^ a b Martínez, Ricardo N.; Andres, Brian; Apaldetti, Cecilia; Cerda, Ignacio A. (March 2022). "The dawn of the flying reptiles: first Triassic record in the southern hemisphere". Papers in Palaeontology. 8 (2). Bibcode:2022PPal....8E1424M. doi:10.1002/spp2.1424. ISSN 2056-2799. S2CID 247494547.
  367. ^ Ortiz David LD, González Riga BJ, Kellner AW (2022). "Thanatosdrakon amaru, gen. et sp. nov., a giant azhdarchid pterosaur from the upper Cretaceous of Argentina". Cretaceous Research. 137: Article 105228. Bibcode:2022CrRes.13705228O. doi:10.1016/j.cretres.2022.105228. S2CID 248140163.
  368. ^ Sangster S (2022). "The osteology of Dimorphodon macronyx, a non-pterodactyloid pterosaur from the Lower Jurassic of Dorset, England". Monographs of the Palaeontographical Society. 175 (661): 1–48. doi:10.1080/02693445.2021.2037868. S2CID 249960693.
  369. ^ Clark AD, Hone DW (2022). "Evolutionary pressures of aerial insectivory reflected in anurognathid pterosaurs". Journal of Anatomy. 242 (5): 917–926. doi:10.1111/joa.13814. PMC 10093155. PMID 36584353. S2CID 255326382.
  370. ^ Dalla Vecchia FM (2022). "The presence of an orbitoantorbital fenestra: further evidence of the anurognathid peculiarity within the Pterosauria". Rivista Italiana di Paleontologia e Stratigrafia. 128 (1): 23–42. doi:10.54103/2039-4942/16973.
  371. ^ Jiang S, Wang X, Zheng X, Cheng X, Wang X, Wei G, Kellner AW (2022). "Two emetolite-pterosaur associations from the Late Jurassic of China: showing the first evidence for antiperistalsis in pterosaurs". Philosophical Transactions of the Royal Society B: Biological Sciences. 377 (1847): Article ID 20210043. doi:10.1098/rstb.2021.0043. PMC 8819363. PMID 35125005. S2CID 246608508.
  372. ^ Augustin FJ, Kampouridis P, Hartung J, Albersdörfer R, Matzke AT (2022). "The geologically oldest specimen of Pterodactylus: a new exquisitely preserved skeleton from the Upper Jurassic (Kimmeridgian) Plattenkalk deposits of Painten (Bavaria, Germany)". Fossil Record. 25 (2): 331–343. doi:10.3897/fr.25.90692.
  373. ^ Alarcón J, Codorniú L, Gonzalez E, Suárez ME, Suárez M, Vicencio-Campos O, Soto-Acuña S, Kaluza J, Vargas AO, Rubilar-Rogers D (2022). "A new locality with ctenochasmatid pterosaurs (Pterosauria: Pterodactyloidea) in the Atacama desert, northern Chile". Cretaceous Research. 135: 105173. Bibcode:2022CrRes.13505173A. doi:10.1016/j.cretres.2022.105173. S2CID 246804386.
  374. ^ Gao DS, Jiang SX, Xu L, Cheng X, Yang LL, Jia SH, Wang XL (2022). "Reappraisal of the largest ctenochasmatid Moganopterus zhuiana Lü et al., 2012". Vertebrata PalAsiatica. 60 (3): 197–211. doi:10.19615/j.cnki.2096-9899.220111.
  375. ^ Pittman M, Kaye TG, Campos HB, Habib MB (2022). "Quadrupedal water launch capability demonstrated in small Late Jurassic pterosaurs". Scientific Reports. 12 (1): Article number 6540. Bibcode:2022NatSR..12.6540P. doi:10.1038/s41598-022-10507-2. PMC 9023563. PMID 35449226.
  376. ^ Averianov AO, Kurin AS (2022). "A new specimen of pteranodontid pterosaur Bogolubovia orientalis from the Upper Cretaceous of Penza Province, Russia". Historical Biology: An International Journal of Paleobiology. 35 (8): 1288–1296. doi:10.1080/08912963.2022.2087522. S2CID 249728681.
  377. ^ Griffin B, Martin-Silverstone E, Demuth O, Pêgas R, Palmer C, Rayfield E (2022). "Constraining pterosaur launch: range of motion in the pectoral and pelvic girdles of a medium-sized ornithocheiraean pterosaur". Biological Journal of the Linnean Society. 137 (2): 250–266. doi:10.1093/biolinnean/blac063.
  378. ^ Duque RR, Pinheiro FL, Barreto AM (2022). "The ontogenetic growth of Anhangueridae (Pterosauria, Pterodactyloidea) premaxillary crests as revealed by a crestless Anhanguera specimen". Journal of Vertebrate Paleontology. 42 (1): e2116984. Bibcode:2022JVPal..42E6984D. doi:10.1080/02724634.2022.2116984. S2CID 252864314.
  379. ^ Pentland AH, Poropat SF, White MA, Rigby SL, Bevitt JJ, Duncan RJ, Sloan T, Elliott RA, Elliott HA, Elliott JA, Elliott DA (2022). "The osteology of Ferrodraco lentoni, an anhanguerid pterosaur from the mid-Cretaceous of Australia". Journal of Vertebrate Paleontology. 41 (5): e2038182. doi:10.1080/02724634.2021.2038182. S2CID 247814094.
  380. ^ Smith RE, Martill DM (2022). "First occurrence of azhdarchoid pterosaurs in the Gault Formation (Lower Cretaceous, Albian) of England, United Kingdom with a brief review of Gault pterosaurs". Proceedings of the Geologists' Association. 133 (6): 491–500. Bibcode:2022PrGA..133..491S. doi:10.1016/j.pgeola.2022.06.003. S2CID 250187966.
  381. ^ Zhou CF, Niu T, Yu D (2023). "New data on the postcranial skeleton of the tapejarid Sinopterus from the Early Cretaceous Jehol Biota". Historical Biology: An International Journal of Paleobiology. 35 (3): 356–363. Bibcode:2023HBio...35..356Z. doi:10.1080/08912963.2022.2042811. S2CID 247046176.
  382. ^ Zhou CF, Yu D, Zhu Z, Andres B (2022). "A new wing skeleton of the Jehol tapejarid Sinopterus and its implications for ontogeny and paleoecology of the Tapejaridae". Scientific Reports. 12 (1): Article number 10159. Bibcode:2022NatSR..1210159Z. doi:10.1038/s41598-022-14111-2. PMC 9205892. PMID 35715498.
  383. ^ Cincotta A, Nicolaï M, Campos HB, McNamara M, D'Alba L, Shawkey MD, Kischlat EE, Yans J, Carleer R, Escuillié F, Godefroit P (2022). "Pterosaur melanosomes support signalling functions for early feathers". Nature. 604 (7907): 684–688. Bibcode:2022Natur.604..684C. doi:10.1038/s41586-022-04622-3. PMC 9046085. PMID 35444275.
  384. ^ Canejo L, Holgado B, Weinschütz LC, Ricetti JH, Wilner E, Kellner AW (2022). "Novel information on the cranial anatomy of the tapejarine pterosaur Caiuajara dobruskii". PLOS ONE. 17 (12). e0277780. Bibcode:2022PLoSO..1777780C. doi:10.1371/journal.pone.0277780. PMC 9754175. PMID 36520711.
  385. ^ Jung J, Huh M, Unwin DM, Smyth RS, Hwang KG, Kim HJ, Choi BD, Xing L (2022). "Evidence for a mixed-age group in a pterosaur footprint assemblage from the early Upper Cretaceous of Korea". Scientific Reports. 12 (1): Article number 10707. Bibcode:2022NatSR..1210707J. doi:10.1038/s41598-022-14966-5. PMC 9226182. PMID 35739247.
  386. ^ Averianov AO, Ivantsov SV, Leshchinskiy SV, Skutschas PP (2022). "First pterosaur bone from the Lower Cretaceous of Siberia, Russia". Cretaceous Research. 137: Article 105230. Bibcode:2022CrRes.13705230A. doi:10.1016/j.cretres.2022.105230. S2CID 248136173.
  387. ^ Averianov AO, Zverkov NG, Nikiforov AV (2022). "A New Finding of a Pterosaur in the Southern Urals". Doklady Earth Sciences. 503 (2): 185–188. Bibcode:2022DokES.503..185A. doi:10.1134/S1028334X22040031. S2CID 248378329.
  388. ^ Díaz-Martínez I, Heredia AM, González SN, Canale N, de Valais S, Cónsole-Gonella CA, Montes RM, Caratelli M, Urzagasti-Torres S, Fischer G, Lecuona A, Paniceres P, Salgado L, Citton P (2022). "Pterosaur Tracks from the Upper Cretaceous Anacleto Formation (Neuquén Basin), Northern Patagonia, Argentina: Insights into Campanian Pterosaur Diversity in Gondwana". Diversity. 14 (11). 1007. doi:10.3390/d14111007.
  389. ^ Pretto, Flávio Augusto; Müller, Rodrigo Temp; Moro, Debora; Garcia, Maurício Silva; Paes Neto, Voltaire Dutra; da Rosa, Átila Augusto Stock (2022-09-28). "The oldest South American silesaurid: New remains from the Middle Triassic (Pinheiros-Chiniquá Sequence, Dinodontosaurus Assemblage Zone) increase the time range of silesaurid fossil record in southern Brazil". Journal of South American Earth Sciences. 120: 104039. Bibcode:2022JSAES.12004039P. doi:10.1016/j.jsames.2022.104039. ISSN 0895-9811. S2CID 252609210.
  390. ^ a b Kellner AW, Holgado B, Grillo O, Pretto FA, Kerber L, Pinheiro FL, Soares MB, Schultz CL, Lopes RT, Araújo O, Müller RT (2022). "Reassessment of Faxinalipterus minimus, a purported Triassic pterosaur from southern Brazil with the description of a new taxon". PeerJ. 10: e13276. doi:10.7717/peerj.13276. PMC 9074864. PMID 35529502.
  391. ^ Müller RT (2022). "The closest evolutionary relatives of pterosaurs: what the morphospace occupation of different skeletal regions tell us about lagerpetids". The Anatomical Record. 305 (12): 3456–3462. doi:10.1002/ar.24904. PMID 35199946. S2CID 247081990.
  392. ^ Foffa D, Dunne EM, Nesbitt SJ, Butler RJ, Fraser NC, Brusatte SL, Farnsworth A, Lunt DJ, Valdes PJ, Walsh S, Barrett PM (2022). "Scleromochlus and the early evolution of Pterosauromorpha". Nature. 610 (7931): 313–318. Bibcode:2022Natur.610..313F. doi:10.1038/s41586-022-05284-x. hdl:1983/830eeee0-9e07-4410-90e2-e33fb46faa59. PMID 36198797. S2CID 252737486.
  393. ^ Müller RT, Garcia MS (2022). "Oldest dinosauromorph from South America and the early radiation of dinosaur precursors in Gondwana". Gondwana Research. 107: 42–48. Bibcode:2022GondR.107...42M. doi:10.1016/j.gr.2022.02.010. S2CID 247211845.
  394. ^ Gatesy SM, Manafzadeh AR, Bishop PJ, Turner ML, Kambic RE, Cuff AR, Hutchinson JR (2022). "A proposed standard for quantifying 3-D hindlimb joint poses in living and extinct archosaurs". Journal of Anatomy. 241 (1): 101–118. doi:10.1111/joa.13635. PMC 9178381. PMID 35118654. S2CID 246529365.
  395. ^ Cuff AR, Demuth OE, Michel K, Otero A, Pintore R, Polet DT, Wiseman AL, Hutchinson JR (2022). "Walking—and Running and Jumping—with Dinosaurs and Their Cousins, Viewed Through the Lens of Evolutionary Biomechanics". Integrative and Comparative Biology. 62 (5): 1281–1305. doi:10.1093/icb/icac049. PMID 35595475.
  396. ^ Lautenschlager S (2022). "Functional and ecomorphological evolution of orbit shape in mesozoic archosaurs is driven by body size and diet". Communications Biology. 5 (1): Article number 754 (2022). doi:10.1038/s42003-022-03706-0. PMC 9372157. PMID 35953708.
  397. ^ Sakamoto M (2022). "Estimating bite force in extinct dinosaurs using phylogenetically predicted physiological cross-sectional areas of jaw adductor muscles". PeerJ. 10: e13731. doi:10.7717/peerj.13731. PMC 9285543. PMID 35846881.
  398. ^ Cuff AR, Wiseman AL, Bishop PJ, Michel KB, Gaignet R, Hutchinson JR (2022). "Anatomically grounded estimation of hindlimb muscle sizes in Archosauria". Journal of Anatomy. 242 (2): 289–311. doi:10.1111/joa.13767. PMC 9877486. PMID 36206401. S2CID 252758737.
  399. ^ Egawa S, Griffin CT, Bishop PJ, Pintore R, Tsai HP, Botelho JF, Smith-Paredes D, Kuratani S, Norell MA, Nesbitt SJ, Hutchinson JR, Bhullar BA (2022). "The dinosaurian femoral head experienced a morphogenetic shift from torsion to growth along the avian stem". Proceedings of the Royal Society B: Biological Sciences. 289 (1984). 20220740. doi:10.1098/rspb.2022.0740. PMC 9532989. PMID 36196539.
  400. ^ Wiemann J, Menéndez I, Crawford JM, Fabbri M, Gauthier JA, Hull PM, Norell MA, Briggs DE (2022). "Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur". Nature. 606 (7914): 522–526. Bibcode:2022Natur.606..522W. doi:10.1038/s41586-022-04770-6. PMID 35614213. S2CID 249064466.
  401. ^ Motani R, Gold DA, Carlson SJ, Vermeij GJ (2023). "Amniote metabolism and the evolution of endothermy". Nature. 621 (7977): E1–E3. Bibcode:2023Natur.621E...1M. doi:10.1038/s41586-023-06411-y. PMID 37674001. S2CID 261559795.
  402. ^ Wiemann J, Menéndez I, Crawford JM, Fabbri M, Gauthier JA, Hull PM, Norell MA, Briggs DE (2023). "Reply to: Amniote metabolism and the evolution of endothermy". Nature. 621 (7977): E4–E6. Bibcode:2023Natur.621E...4W. doi:10.1038/s41586-023-06412-x. PMID 37673991.
  403. ^ Langer MC, Godoy PL (2022). "So Volcanoes Created the Dinosaurs? A Quantitative Characterization of the Early Evolution of Terrestrial Pan-Aves". Frontiers in Earth Science. 10: Article 899562. Bibcode:2022FrEaS..10.9562L. doi:10.3389/feart.2022.899562.
  404. ^ Farlow JO, Lallensack JN, Müller RT, Hyatt JA (2022). "Pedal Skeletal Proportions of Bipedal and Potentially Bipedal Dinosaurs and Other Archosaurs: Interpreting the Makers of Early Mesozoic Footprints". Bulletin of the Peabody Museum of Natural History. 63 (2): 33–90. doi:10.3374/014.063.0201. S2CID 252623987.
  405. ^ Goto Y, Yoda K, Weimerskirch H, Sato K (2022). "How did extinct giant birds and pterosaurs fly? A comprehensive modeling approach to evaluate soaring performance". PNAS Nexus. 1 (1): pgac023. doi:10.1093/pnasnexus/pgac023. PMC 9802081. PMID 36712794.
  406. ^ Pittman M, Kaye TG, Wang X, Zheng X, Dececchi TA, Hartman SA (2022). "Preserved soft anatomy confirms shoulder-powered upstroke of early theropod flyers, reveals enhanced early pygostylian upstroke, and explains early sternum loss". Proceedings of the National Academy of Sciences of the United States of America. 119 (47). e2205476119. Bibcode:2022PNAS..11905476P. doi:10.1073/pnas.2205476119. PMC 9704744. PMID 36375073.
  407. ^ Pittman, M.; Bell, P. R.; Miller, C. V.; Enriquez, N. J.; Wang, X.; Zheng, X.; Tsang, L. R.; Tse, Y. T.; Landes, M.; Kaye, T. G. (2022). "Exceptional preservation and foot structure reveal ecological transitions and lifestyles of early theropod flyers". Nature Communications. 13 (1). 7684. Bibcode:2022NatCo..13.7684P. doi:10.1038/s41467-022-35039-1. PMC 9768147. PMID 36539437.
  408. ^ Lockley MG, Helm CW, Lawfield AM, Sharmanb KJ (2022). "New evidence for avian and small non-avian theropod ichnotaxa from the Lower Cretaceous of Canada: implications for theropod ichnodiversity". Cretaceous Research. 138: Article 105292. Bibcode:2022CrRes.13805292L. doi:10.1016/j.cretres.2022.105292.
  409. ^ Cabrera-Hernández JS, Montellano-Ballesteros M, Roy PD, Fastovsky DE (2022). "Eggshells assemblages and stable isotope composition in the Upper Cretaceous (Campanian) El Gallo Formation of Baja California, Mexico: paleoenvironmental inferences". Cretaceous Research. 138: Article 105265. Bibcode:2022CrRes.13805265C. doi:10.1016/j.cretres.2022.105265. S2CID 249166930.