In algebraic topology, universal coefficient theorems establish relationships between homology groups (or cohomology groups) with different coefficients. For instance, for every topological space X, its integral homology groups:

Hi(X; Z)

completely determine its homology groups with coefficients in A, for any abelian group A:

Hi(X; A)

Here Hi might be the simplicial homology, or more generally the singular homology. The usual proof of this result is a pure piece of homological algebra about chain complexes of free abelian groups. The form of the result is that other coefficients A may be used, at the cost of using a Tor functor.

For example it is common to take A to be Z/2Z, so that coefficients are modulo 2. This becomes straightforward in the absence of 2-torsion in the homology. Quite generally, the result indicates the relationship that holds between the Betti numbers bi of X and the Betti numbers bi,F with coefficients in a field F. These can differ, but only when the characteristic of F is a prime number p for which there is some p-torsion in the homology.

Statement of the homology case edit

Consider the tensor product of modules Hi(X; Z) ⊗ A. The theorem states there is a short exact sequence involving the Tor functor

 

Furthermore, this sequence splits, though not naturally. Here μ is the map induced by the bilinear map Hi(X; Z) × AHi(X; A).

If the coefficient ring A is Z/pZ, this is a special case of the Bockstein spectral sequence.

Universal coefficient theorem for cohomology edit

Let G be a module over a principal ideal domain R (e.g., Z or a field.)

There is also a universal coefficient theorem for cohomology involving the Ext functor, which asserts that there is a natural short exact sequence

 

As in the homology case, the sequence splits, though not naturally.

In fact, suppose

 

and define:

 

Then h above is the canonical map:

 

An alternative point-of-view can be based on representing cohomology via Eilenberg–MacLane space where the map h takes a homotopy class of maps from X to K(G, i) to the corresponding homomorphism induced in homology. Thus, the Eilenberg–MacLane space is a weak right adjoint to the homology functor.[1]

Example: mod 2 cohomology of the real projective space edit

Let X = Pn(R), the real projective space. We compute the singular cohomology of X with coefficients in R = Z/2Z.

Knowing that the integer homology is given by:

 

We have Ext(R, R) = R, Ext(Z, R) = 0, so that the above exact sequences yield

 

In fact the total cohomology ring structure is

 

Corollaries edit

A special case of the theorem is computing integral cohomology. For a finite CW complex X, Hi(X; Z) is finitely generated, and so we have the following decomposition.

 

where βi(X) are the Betti numbers of X and   is the torsion part of  . One may check that

 

and

 

This gives the following statement for integral cohomology:

 

For X an orientable, closed, and connected n-manifold, this corollary coupled with Poincaré duality gives that βi(X) = βni(X).

Universal coefficient spectral sequence edit

There is a generalization of the universal coefficient theorem for (co)homology with twisted coefficients.

For cohomology we have

 

Where   is a ring with unit,   is a chain complex of free modules over  ,   is any  -bimodule for some ring with a unit  ,   is the Ext group. The differential   has degree  .

Similarly for homology

 

for Tor the Tor group and the differential   having degree  .


Notes edit

References edit

  • Allen Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002. ISBN 0-521-79540-0. A modern, geometrically flavored introduction to algebraic topology. The book is available free in PDF and PostScript formats on the author's homepage.
  • Kainen, P. C. (1971). "Weak Adjoint Functors". Mathematische Zeitschrift. 122: 1–9. doi:10.1007/bf01113560. S2CID 122894881.
  • Jerome Levine. “Knot Modules. I.” Transactions of the American Mathematical Society 229 (1977): 1–50. https://doi.org/10.2307/1998498

External links edit