Open main menu
An idealized band structure for a topological insulator. The Fermi level falls within the bulk band gap which is traversed by topologically-protected surface states.[1]

A topological insulator is a material with non-trivial symmetry-protected topological order that behaves as an insulator in its interior but whose surface contains conducting states,[2] meaning that electrons can only move along the surface of the material. However, having a conducting surface is not unique to topological insulators, since ordinary band insulators can also support conductive surface states. What is special about topological insulators is that their surface states are symmetry-protected[3][4][5][6] by particle number conservation and time-reversal symmetry. In two-dimensional (2D) systems, this ordering is analogous to a conventional electron gas subject to a strong external magnetic field causing electronic excitation gap in the sample bulk and metallic conduction at the boundaries or surfaces [7] [8].

The distinction between 2D and 3D topological insulators is characterized by the Z-2 topological invariant, which defines the ground state. In 2D, there is a single Z-2 invariant distinguishing the insulator from the quantum spin-Hall phase whiles in 3D, there are four Z-2 invariant that differentiate the insulator from “weak” and “strong” topological insulators.[9]

In the bulk of a non-interacting topological insulator, the electronic band structure resembles an ordinary band insulator, with the Fermi level falling between the conduction and valence bands. On the surface of a topological insulator there are special states that fall within the bulk energy gap and allow surface metallic conduction. Carriers in these surface states have their spin locked at a right-angle to their momentum (spin-momentum locking). At a given energy the only other available electronic states have different spin, so the "U"-turn scattering is strongly suppressed and conduction on the surface is highly metallic. Non-interacting topological insulators are characterized by an index (known as topological invariants) similar to the genus in topology.[2]

As long as time-reversal symmetry is preserved (i.e., there is no magnetism), the index cannot change by small perturbations and the conducting states at the surface are symmetry-protected. On the other hand, in the presence of magnetic impurities, the surface states will generically become insulating. Nevertheless, if certain crystalline symmetries like inversion are present, the index is still well defined. These materials are known as magnetic topological insulators and their insulating surfaces exhibit a half-quantized surface anomalous Hall conductivity.

Contents

PredictionEdit

Time-reversal symmetry-protected two-dimensional edge states were predicted in 1987 by Oleg Pankratov[10] to occur in quantum wells (very thin layers) of mercury telluride sandwiched between cadmium telluride, and were observed in 2007.[11] It was discovered that electrons that are confined to two dimensions and subject to strong magnetic field show a different topological ordering, which underlies the quantum Hall effect.[1] The effect of this topological ordering results in the emergence of particles with fractional charges and non-dissipation transport. The distinguishing features of topological materials stems in the fact that they are insulating (have energy gaps) in the bulk but have a "protected" metallic properties (gapless) at the edge or surface state. These "protected" gapless states are governed by the time-reversal symmetry and the band structure of the material.

In 2006, it was predicted that similar topological insulators might be found in binary compounds involving bismuth,[12][13][14][15] and in particular "strong topological insulators" exist that cannot be reduced to multiple copies of the quantum spin Hall state.[16]

Experimental realizationEdit

Topological insulators were first realized in 2D in system containing HgTe quantum wells sandwiched between cadmium telluride in 2007.

The first 3D topological insulator to be realized experimentally was Bi1 − x Sb x.[9][17][18] Bismuth in its pure state, is a semimetal with a small electronic band gap. Using angle- resolved photoemission spectroscopy, and other measurements, it was observed that Bi1 − xSbx alloy exhibits an odd surface state (SS) crossing between any pair of Kramers points.[17] Additionally, bulk Bi1 − xSbx has been predicted to have 3D Dirac particles.[19] This prediction is of particular interest due to the observation of charge quantum Hall fractionalization in 2D graphene [20] and pure bismuth.[21]

Shortly thereafter symmetry-protected surface states were also observed in pure antimony, bismuth selenide, bismuth telluride and antimony telluride using angle-resolved photoemission spectroscopy (ARPES).[22][23] and bismuth selenide.[23][24] Many semiconductors within the large family of Heusler materials are now believed to exhibit topological surface states.[25][26] In some of these materials, the Fermi level actually falls in either the conduction or valence bands due to naturally-occurring defects, and must be pushed into the bulk gap by doping or gating.[27][28] In 2012, topological Kondo insulators were discovered in samarium hexaboride, which is a bulk insulator at low temperatures.[29][30] The surface states of a 3D topological insulator is a new type of two-dimensional electron gas (2DEG) where the electron's spin is locked to its linear momentum.[31]

Fully bulk-insulating or intrinsic 3D topological insulator states exist in Bi-based materials.[32]

In 2014, it was shown that magnetic components, like the ones in spin-torque computer memory, can be manipulated by topological insulators.[33][34]

The effect is related to metal–insulator transitions (Bose–Hubbard model).[citation needed]

Properties and applicationsEdit

Spin-momentum locking[31] in the topological insulator allows symmetry-protected surface states to host Majorana particles if superconductivity is induced on the surface of 3D topological insulators via proximity effects.[35] (Note that Majorana zero-mode can also appear without topological insulators.[36]) The non-trivialness of topological insulators is encoded in the existence of a gas of helical Dirac fermions. Dirac particles which behave like massless relativistic fermions have been observed in 3D topological insulators. Note that the gapless surface states of topological insulators differ from those in the quantum Hall effect: the gapless surface states of topological insulators are symmetry-protected (i.e., not topological), while the gapless surface states in quantum Hall effect are topological (i.e., robust against any local perturbations that can break all the symmetries). The   topological invariants cannot be measured using traditional transport methods, such as spin Hall conductance, and the transport is not quantized by the   invariants. An experimental method to measure   topological invariants was demonstrated which provide a measure of the   topological order.[37] (Note that the term   topological order has also been used to describe the topological order with emergent   gauge theory discovered in 1991.[38][39]) More generally (in what is known as the ten-fold way) for each spatial dimensionality, each of the ten Altland—Zirnbauer symmetry classes of random Hamiltonians labelled by the type of discrete symmetry (time-reversal symmetry, particle-hole symmetry, and chiral symmetry) has a corresponding group of topological invariants (either  ,   or trivial) as described by the periodic table of topological invariants.[40]

The most promising applications of topological insulators are spintronic devices and dissipationless transistors for quantum computers based on the quantum spin Hall effect[11] and quantum anomalous Hall effect.[41] In addition, topological insulator materials have also found practical applications in advanced magnetoelectronic and optoelectronic devices.[42][43]

SynthesisEdit

Topological insulators can be grown using different methods such as metal-organic chemical vapor deposition (MOCVD),[44] solvothermal synthesis,[45] sonochemical technique [46] and molecular beam epitaxy

 
Schematic of the components of a MBE system

(MBE).[23] MBE has so far been the most common experimental technique used in the growth of topological insulators. The growth of thin film topological insulators is governed by weak Van der Waals interactions.[47] The weak interaction allows to exfoliate the thin film from bulk crystal with a clean and perfect surface. The Van der Waals interactions in epitaxy also known as Van der Waals epitaxy (VDWE), is a phenomenon governed by weak Van der Waal’s interactions between layered materials of different or same elements [48] in which the materials are stacked on top of each other. This approach allows the growth of layered topological insulators on other substrates for heterostructure and integrated circuits.[48]

Molecular Beam Epitaxial (MBE) growth of topological insulators

MBE is an epitaxy method for the growth of a crystalline material on a crystalline substrate to form an ordered layer. MBE is performed in high vacuum or ultra-high vacuum, the elements are heated in different electron beam evaporators until they sublime. The gaseous elements then condense on the wafer where they react with each other to form single crystals.

MBE is an appropriate technique for the growth of high quality single-crystal films. In order to avoid a huge lattice mismatch and defects at the interface, the substrate and thin film are expected to have similar lattice constants. MBE has an advantage over other methods due to the fact that the synthesis is performed in high vacuum hence resulting in less contamination. Additionally, lattice defect is reduced due to the ability to influence the growth rate and the ratio of species of source materials present at the substrate interface.[49] Furthermore, in MBE, samples can be grown layer by layer which results in flat surfaces with smooth interface for engineered heterostructures. Moreover, MBE synthesis technique benefits from the ease of moving a topological insulator sample from the growth chamber to a characterization chamber such as angle-resolved photoemission spectroscopy (ARPES) or scanning tunneling microscopy (STM) studies.[50]

Due to the weak Van der Waals bonding, which relaxes the lattice-matching condition, TI can be grown on a wide variety of substrates [51] such as Si(111),[52][53] Al2O3 , GaAs(111),[54]

InP(111), CdS(0001) and Y3Fe5O12 .

Bismuth-based topological insulatorsEdit

Thus far, the field of topological insulators has been focused on bismuth and antimony chalcogenide based materials such as Bi2Se3 , Bi2Te3 , Sb2Te3 or Bi1 − xSbx. The choice of chalcogenides is related to the Van der Waals relaxation of the lattice matching strength which restricts the number of materials and substrates.[49] Bismuth chalcogenides have been studied extensively for TIs and their applications in thermoelectric materials. The Van der Waals interaction in TIs exhibit important features due to low surface energy. For instance, the surface of Bi2Te3 is usually terminated by Te due to its low surface energy.[23]

Bismuth chalcogenides have been successfully grown on different substrates. In particular, Si has been a good substrate for the successful growth of Bi2Te3 . However, the use of sapphire as substrate has not been so encouraging due to a large mismatch of about 15%.[55] The selection of appropriate substrate can improve the overall properties of TI. The use of buffer layer can reduce the lattice match hence improving the electrical properties of TI.[55] Bi2Se3 can be grown on top of various Bi1 − xInxSe3 buffers. Table 1 shows Bi2Se3 , Bi2Te3 , Sb2Te3 on different substrates and the resulting lattice mismatch. Generally, regardless of the substrate used, the resulting films have a textured surface that is characterized by pyramidal single-crystal domains with quintuple-layer steps. The size and relative proportion of these pyramidal domains vary with factors that include film thickness, lattice mismatch with the substrate and interfacial chemistry-dependent film nucleation. The synthesis of thin films have the stoichiometry problem due to the high vapor pressures of the elements. Thus, binary tetradymites are extrinsically doped as n-type (Bi2Se3 , Bi2Te3 ) or p-type (Sb2Te3 ).[49] Due to the weak van der Waals bonding, graphene is one of the preferred substrates for TI growth despite the large lattice mismatch.

Lattice mismatch of different substrates[51]
Substrate Bi2Se3 % Bi2Te3 % Sb2Te3 %
graphene -40.6 -43.8 -42.3
Si -7.3 -12.3 -9.7
CaF2 -6.8 -11.9 -9.2
GaAs -3.4 -8.7 -5.9
CdS -0.2 -5.7 -2.8
InP 0.2 -5.3 -2.3
BaF2 5.9 0.1 2.8
CdTe 10.7 4.6 7.8
Al2O3 14.9 8.7 12.0
SiO2 18.6 12.1 15.5

Characterization of topological insulatorsEdit

The first step of topological insulators characterization takes place right after synthesis, meaning without breaking the vacuum and moving the sample to an atmosphere. That could be done by using angle-resolved photoemission spectroscopy (ARPES) or scanning tunneling microscopy (STM) techniques.[50] Further measurements includes structural and chemical probes such as X-ray diffraction and energy-dispersive spectroscopy but depending on the sample quality, the lack of sensitivity could remain. The most effective metric is the electrical transport measurements of resistivity, Hall effect, and magnetoresistance.[50]

Future developmentsEdit

The field of topological insulators still needs to be developed. The best bismuth chalcogenide topological insulators have about 10 meV bandgap variation due to the charge. Further development should focus on the examination of both: the presence of high-symmetry electronic bands and simply synthesized materials. One of the promising candidates is half-Heusler compounds.[50] These crystal structures can consist of a large number of elements. Band structures and energy gaps are very sensitive to the valence configuration; because of the increased likelihood of intersite exchange and disorder, they are also very sensitive to specific crystalline configurations. A nontrivial band structure that exhibits band ordering analogous to that of the known 2D and 3D TI materials was predicted in a variety of 18-electron half-Heusler compounds using first-principles calculations.[56]

See alsoEdit

ReferencesEdit

  1. ^ a b Moore, Joel E. (2010). "The birth of topological insulators". Nature. 464 (7286): 194–198. Bibcode:2010Natur.464..194M. doi:10.1038/nature08916. ISSN 0028-0836. PMID 20220837.
  2. ^ a b Kane, C. L.; Mele, E. J. (2005). "Z2 Topological Order and the Quantum Spin Hall Effect". Physical Review Letters. 95 (14): 146802. arXiv:cond-mat/0506581. Bibcode:2005PhRvL..95n6802K. doi:10.1103/PhysRevLett.95.146802. PMID 16241681.
  3. ^ Zheng-Cheng Gu and Xiao-Gang Wen Tensor-Entanglement-Filtering Renormalization Approach and Symmetry-Protected Topological Order Phys. Rev. B80, 155131 (2009).
  4. ^ Pollmann, F.; Berg, E.; Turner, Ari M.; Oshikawa, Masaki (2012). "Symmetry protection of topological phases in one-dimensional quantum spin systems". Phys. Rev. B. 85 (7): 075125. arXiv:0909.4059. Bibcode:2012PhRvB..85g5125P. doi:10.1103/PhysRevB.85.075125.
  5. ^ Chen, Xie; Gu, Zheng-Cheng; Wen, Xiao-Gang (2011). "Classification of Gapped Symmetric Phases in 1D Spin Systems". Phys. Rev. B. 83 (3): 035107. arXiv:1008.3745. Bibcode:2011PhRvB..83c5107C. doi:10.1103/physrevb.83.035107.
  6. ^ Chen, Xie; Liu, Zheng-Xin; Wen, Xiao-Gang (2011). "2D symmetry-protected topological orders and their protected gapless edge excitations". Phys. Rev. B. 84 (23): 235141. arXiv:1106.4752. Bibcode:2011PhRvB..84w5141C. doi:10.1103/physrevb.84.235141.
  7. ^ Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. (2008). "A topological Dirac insulator in a quantum spin Hall phase". Nature. 452 (7190): 970–974. arXiv:0902.1356. doi:10.1038/nature06843. ISSN 0028-0836. PMID 18432240.
  8. ^ Tsui, D. C.; Stormer, H. L.; Gossard, A. C. (1982-05-31). "Two-Dimensional Magnetotransport in the Extreme Quantum Limit". Physical Review Letters. 48 (22): 1559–1562. Bibcode:1982PhRvL..48.1559T. doi:10.1103/PhysRevLett.48.1559.
  9. ^ a b Fu, Liang; Kane, C. L. (2007-07-02). "Topological insulators with inversion symmetry". Physical Review B. 76 (4): 045302. arXiv:cond-mat/0611341. doi:10.1103/PhysRevB.76.045302.
  10. ^ Pankratov, O.A.; Pakhomov, S.V.; Volkov, B.A. (January 1987). "Supersymmetry in heterojunctions: Band-inverting contact on the basis of Pb1-xSnxTe and Hg1-xCdxTe". Solid State Communications. 61 (2): 93–96. Bibcode:1987SSCom..61...93P. doi:10.1016/0038-1098(87)90934-3.
  11. ^ a b König, Markus; Wiedmann, Steffen; Brüne, Christoph; Roth, Andreas; Buhmann, Hartmut; Molenkamp, Laurens W.; Qi, Xiao-Liang; Zhang, Shou-Cheng (2007-11-02). "Quantum Spin Hall Insulator State in HgTe Quantum Wells". Science. 318 (5851): 766–770. arXiv:0710.0582. Bibcode:2007Sci...318..766K. doi:10.1126/science.1148047. PMID 17885096.
  12. ^ Roy, Rahul (2009-05-21). "Three dimensional topological invariants for time reversal invariant Hamiltonians and the three dimensional quantum spin Hall effect". Physical Review B. 79: 195322. arXiv:cond-mat/0607531. doi:10.1103/PhysRevB.79.195322.
  13. ^ Liang Fu; C. L. Kane; E. J. Mele (2007-03-07). "Topological insulators in three dimensions". Physical Review Letters. 98 (10): 106803. arXiv:cond-mat/0607699. doi:10.1103/PhysRevLett.98.106803.
  14. ^ Fu, Liang; C. L. Kane (2007-07-02). "Topological insulators with inversion symmetry". Physical Review B. 76 (4): 045302. arXiv:cond-mat/0611341. Bibcode:2007PhRvB..76d5302F. doi:10.1103/PhysRevB.76.045302.
  15. ^ Shuichi Murakami (2007). "Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase". New Journal of Physics. 9 (9): 356. arXiv:0710.0930. Bibcode:2007NJPh....9..356M. doi:10.1088/1367-2630/9/9/356. ISSN 1367-2630. Retrieved 2010-03-26.
  16. ^ Kane, C. L.; Moore, J. E. (2011). "Topological Insulators" (PDF). Physics World. 24 (2): 32–36. doi:10.1088/2058-7058/24/02/36.
  17. ^ a b Hasan, M. Zahid; Moore, Joel E. (2011). "Three-Dimensional Topological Insulators". Annual Review of Condensed Matter Physics. 2 (1): 55–78. arXiv:1011.5462. doi:10.1146/annurev-conmatphys-062910-140432. ISSN 1947-5454.
  18. ^ Hsieh, David; Dong Qian; Andrew L. Wray; Yuqi Xia; Yusan Hor; Robert Cava; M. Zahid Hasan (2008). "A Topological Dirac insulator in a quantum spin Hall phase". Nature. 452 (9): 970–974. arXiv:0902.1356. Bibcode:2008Natur.452..970H. doi:10.1038/nature06843. PMID 18432240.
  19. ^ Buot, F. A. (1973-09-01). "Weyl Transform and the Magnetic Susceptibility of a Relativistic Dirac Electron Gas". Physical Review A. 8 (3): 1570–1581. Bibcode:1973PhRvA...8.1570B. doi:10.1103/PhysRevA.8.1570.
  20. ^ Kane, C. L.; Mele, E. J. (2005-11-23). "Quantum Spin Hall Effect in Graphene". Physical Review Letters. 95 (22): 226801. arXiv:cond-mat/0411737. doi:10.1103/PhysRevLett.95.226801. PMID 16384250.
  21. ^ Behnia, Kamran; Balicas, Luis; Kopelevich, Yakov (2007-09-21). "Signatures of Electron Fractionalization in Ultraquantum Bismuth". Science. 317 (5845): 1729–1731. arXiv:0802.1993. Bibcode:2007Sci...317.1729B. doi:10.1126/science.1146509. ISSN 0036-8075. PMID 17702909.
  22. ^ Hasan, M. Zahid; Kane, Charles L. (2010). "Topological Insulators". Reviews of Modern Physics. 82 (4): 3045–3067. arXiv:1002.3895. Bibcode:2010RvMP...82.3045H. doi:10.1103/RevModPhys.82.3045.
  23. ^ a b c d Chen, Xi; Ma, Xu-Cun; He, Ke; Jia, Jin-Feng; Xue, Qi-Kun (2011-03-01). "Molecular Beam Epitaxial Growth of Topological Insulators". Advanced Materials. 23 (9): 1162–1165. doi:10.1002/adma.201003855. ISSN 0935-9648. PMID 21360770.
  24. ^ Chiatti, Olivio; Riha, Christian; Lawrenz, Dominic; Busch, Marco; Dusari, Srujana; Sánchez-Barriga, Jaime; Mogilatenko, Anna; Yashina, Lada V.; Valencia, Sergio (2016-06-07). "2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes". Scientific Reports. 6 (1): 27483. doi:10.1038/srep27483. ISSN 2045-2322. PMC 4895388. PMID 27270569.
  25. ^ Chadov, Stanislav; Xiao-Liang Qi; Jürgen Kübler; Gerhard H. Fecher; Claudia Felser; Shou-Cheng Zhang (July 2010). "Tunable multifunctional topological insulators in ternary Heusler compounds". Nature Materials. 9 (7): 541–545. arXiv:1003.0193. Bibcode:2010NatMa...9..541C. doi:10.1038/nmat2770. PMID 20512154.
  26. ^ Lin, Hsin; L. Andrew Wray; Yuqi Xia; Suyang Xu; Shuang Jia; Robert J. Cava; Arun Bansil; M. Zahid Hasan (July 2010). "Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena". Nat Mater. 9 (7): 546–549. arXiv:1003.0155. Bibcode:2010NatMa...9..546L. doi:10.1038/nmat2771. ISSN 1476-1122. PMID 20512153.
  27. ^ Hsieh, D.; Y. Xia; D. Qian; L. Wray; F. Meier; J. H. Dil; J. Osterwalder; L. Patthey; A. V. Fedorov; H. Lin; A. Bansil; D. Grauer; Y. S. Hor; R. J. Cava; M. Z. Hasan (2009). "Observation of Time-Reversal-Protected Single-Dirac-Cone Topological-Insulator States in Bi2Te3 and Sb2Te3". Physical Review Letters. 103 (14): 146401. Bibcode:2009PhRvL.103n6401H. doi:10.1103/PhysRevLett.103.146401. PMID 19905585.
  28. ^ Noh, H.-J.; H. Koh; S.-J. Oh; J.-H. Park; H.-D. Kim; J. D. Rameau; T. Valla; T. E. Kidd; P. D. Johnson; Y. Hu; Q. Li (2008). "Spin-orbit interaction effect in the electronic structure of Bi2Te3 observed by angle-resolved photoemission spectroscopy". EPL. 81 (5): 57006. arXiv:0803.0052. Bibcode:2008EL.....8157006N. doi:10.1209/0295-5075/81/57006. Retrieved 2010-04-25.
  29. ^ Eugenie Samuel Reich, "Hopes surface for exotic insulator: Findings by three teams may solve a 40-year-old mystery," Nature 492, 165 (2012) [1]
  30. ^ Maxim Dzero, Kai Sun, Victor Galitski, and Piers Coleman, "Topological Kondo Insulators," Phys. Rev. Lett. 104, 106408 (2010) [2]
  31. ^ a b Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J. H.; Meier, F.; Osterwalder, J.; Patthey, L.; Checkelsky, J. G.; Ong, N. P.; Fedorov, A. V.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. (2009). "A tunable topological insulator in the spin helical Dirac transport regime". Nature. 460 (7259): 1101–1105. arXiv:1001.1590. Bibcode:2009Natur.460.1101H. doi:10.1038/nature08234. PMID 19620959.
  32. ^ Xu, Y; Miotkowski,I.; Liu, C., Tian,J.; Nam, H.; Alidoust,N.; Hu,J.; Shih, C.-K; Hasan, M.Z.; Chen, Y.-P. (2014). "Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator". Nature Physics. 10 (12): 956–963. arXiv:1409.3778. Bibcode:2014NatPh..10..956X. doi:10.1038/nphys3140.CS1 maint: Multiple names: authors list (link)
  33. ^ "Weird materials could make faster computers". Science News. Retrieved 2014-07-23.
  34. ^ Mellnik, A. R; Lee, J. S; Richardella, A; Grab, J. L; Mintun, P. J; Fischer, M. H; Vaezi, A; Manchon, A; Kim, E. -A; Samarth, N; Ralph, D. C (2014). "Spin-transfer torque generated by a topological insulator". Nature. 511 (7510): 449–451. arXiv:1402.1124. Bibcode:2014Natur.511..449M. doi:10.1038/nature13534. PMID 25056062.
  35. ^ Fu, L.; C. L. Kane (2008). "Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator". Phys. Rev. Lett. 100 (9): 096407. arXiv:0707.1692. Bibcode:2008PhRvL.100i6407F. doi:10.1103/PhysRevLett.100.096407. PMID 18352737.
  36. ^ Potter, Andrew C.; Lee, Patrick A. (23 March 2012). "Topological superconductivity and Majorana fermions in metallic surface states". Physical Review B. 85 (9): 094516. arXiv:1201.2176. doi:10.1103/physrevb.85.094516. ISSN 1098-0121.
  37. ^ Hsieh, D.; D. Hsieh; Y. Xia; L. Wray; D. Qian; A. Pal; J. H. Dil; F. Meier; J. Osterwalder; C. L. Kane; G. Bihlmayer; Y. S. Hor; R. J. Cava; M. Z. Hasan (2009). "Observation of Unconventional Quantum Spin Textures in Topological Insulators". Science. 323 (5916): 919–922. arXiv:0902.2617. Bibcode:2009Sci...323..919H. doi:10.1126/science.1167733. PMID 19213915.
  38. ^ Read, N.; Sachdev, Subir (1991). "Large-N expansion for frustrated quantum antiferromagnets". Phys. Rev. Lett. 66 (13): 1773–1776. Bibcode:1991PhRvL..66.1773R. doi:10.1103/physrevlett.66.1773. PMID 10043303.
  39. ^ Wen, Xiao-Gang (1991). "Mean Field Theory of Spin Liquid States with Finite Energy Gaps". Phys. Rev. B. 44 (6): 2664–2672. Bibcode:1991PhRvB..44.2664W. doi:10.1103/physrevb.44.2664.
  40. ^ Chiu, C.; J. Teo; A. Schnyder; S. Ryu (2016). "Classification of topological quantum matter with symmetries". Rev. Mod. Phys. 88 (35005): 035005. arXiv:1505.03535. Bibcode:2016RvMP...88c5005C. doi:10.1103/RevModPhys.88.035005.
  41. ^ Chang, Cui-Zu; Zhang, Jinsong; Feng, Xiao; Shen, Jie; Zhang, Zuocheng; Guo, Minghua; Li, Kang; Ou, Yunbo; Wei, Pang (2013-04-12). "Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator". Science. 340 (6129): 167–170. arXiv:1605.08829. Bibcode:2013Sci...340..167C. doi:10.1126/science.1234414. ISSN 0036-8075. PMID 23493424.
  42. ^ Yue, Zengji; Cai, Boyuan; Wang, Lan; Wang, Xiaolin; Gu, Min (2016-03-01). "Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index". Science Advances. 2 (3): e1501536. Bibcode:2016SciA....2E1536Y. doi:10.1126/sciadv.1501536. ISSN 2375-2548. PMC 4820380. PMID 27051869.
  43. ^ Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min (2017-05-18). "Nanometric holograms based on a topological insulator material". Nature Communications. 8: ncomms15354. Bibcode:2017NatCo...815354Y. doi:10.1038/ncomms15354. PMC 5454374. PMID 28516906.
  44. ^ Alegria, L. D.; Schroer, M. D.; Chatterjee, A.; Poirier, G. R.; Pretko, M.; Patel, S. K.; Petta, J. R. (2012-08-06). "Structural and Electrical Characterization of Bi2Se3 Nanostructures Grown by Metal–Organic Chemical Vapor Deposition". Nano Letters. 12 (9): 4711–4714. arXiv:1108.4978. doi:10.1021/nl302108r. ISSN 1530-6984. PMID 22827514.
  45. ^ Wang, Debao; Yu, Dabin; Mo, Maosong; Liu, Xianming; Qian, Yitai (2003-06-01). "Preparation and characterization of wire-like Sb2Se3 and flake-like Bi2Se3 nanocrystals". Journal of Crystal Growth. 253 (1–4): 445–451. doi:10.1016/S0022-0248(03)01019-4. ISSN 0022-0248.
  46. ^ Cui, Hongmei; Liu, Hong; Wang, Jiyang; Li, Xia; Han, Feng; Boughton, R.I. (2004-11-15). "Sonochemical synthesis of bismuth selenide nanobelts at room temperature". Journal of Crystal Growth. 271 (3–4): 456–461. Bibcode:2004JCrGr.271..456C. doi:10.1016/j.jcrysgro.2004.08.015. ISSN 0022-0248.
  47. ^ Jerng, Sahng-Kyoon; Joo, Kisu; Kim, Youngwook; Yoon, Sang-Moon; Lee, Jae Hong; Kim, Miyoung; Kim, Jun Sung; Yoon, Euijoon; Chun, Seung-Hyun (2013). "Ordered growth of topological insulator Bi2Se3 thin films on dielectric amorphous SiO2 by MBE". Nanoscale. 5 (21): 10618–22. arXiv:1308.3817. doi:10.1039/C3NR03032F. ISSN 2040-3364. PMID 24056725.
  48. ^ a b Geim, A. K.; Grigorieva, I. V. (2013). "Van der Waals heterostructures". Nature. 499 (7459): 419–425. arXiv:1307.6718. doi:10.1038/nature12385. ISSN 0028-0836. PMID 23887427.
  49. ^ a b c Heremans, Joseph P.; Cava, Robert J.; Samarth, Nitin (2017-09-05). "Tetradymites as thermoelectrics and topological insulators". Nature Reviews Materials. 2 (10): 17049. Bibcode:2017NatRM...217049H. doi:10.1038/natrevmats.2017.49. ISSN 2058-8437.
  50. ^ a b c d "Topological Insulators: Fundamentals and Perspectives". Wiley.com. 2015-06-29. Retrieved 2018-07-29.
  51. ^ a b He, Liang; Kou, Xufeng; Wang, Kang L. (2013-01-31). "Review of 3D topological insulator thin-film growth by molecular beam epitaxy and potential applications". Physica Status Solidi RRL. 7 (1–2): 50–63. Bibcode:2013PSSRR...7...50H. doi:10.1002/pssr.201307003. ISSN 1862-6254.
  52. ^ Bansal, Namrata; Kim, Yong Seung; Edrey, Eliav; Brahlek, Matthew; Horibe, Yoichi; Iida, Keiko; Tanimura, Makoto; Li, Guo-Hong; Feng, Tian; Lee, Hang-Dong; Gustafsson, Torgny; Andrei, Eva; Oh, Seongshik (2011-10-31). "Epitaxial growth of topological insulator Bi2Se3 film on Si(111) with atomically sharp interface". Thin Solid Films. 520 (1): 224–229. arXiv:1104.3438. Bibcode:2011TSF...520..224B. doi:10.1016/j.tsf.2011.07.033. ISSN 0040-6090.
  53. ^ Zhang, Guanhua; Qin, Huajun; Teng, Jing; Guo, Jiandong; Guo, Qinlin; Dai, Xi; Fang, Zhong; Wu, Kehui (2009-08-03). "Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3". Applied Physics Letters. 95 (5): 053114. doi:10.1063/1.3200237. ISSN 0003-6951.
  54. ^ Richardella, A.; Zhang, D. M.; Lee, J. S.; Koser, A.; Rench, D. W.; Yeats, A. L.; Buckley, B. B.; Awschalom, D. D.; Samarth, N. (2010-12-27). "Coherent heteroepitaxy of Bi2Se3 on GaAs (111)B". Applied Physics Letters. 97 (26): 262104. doi:10.1063/1.3532845. ISSN 0003-6951.
  55. ^ a b Ginley, Theresa P.; Wang, Yong; Law, Stephanie (2016-11-23). "Topological Insulator Film Growth by Molecular Beam Epitaxy: A Review". Crystals. 6 (11): 154. doi:10.3390/cryst6110154.
  56. ^ Zhang, X.M.; Liu, E.K.; Liu, Z.Y.; Liu, G.D.; Wu, G.H.; Wang, W.H. (2013-04-01). "Prediction of topological insulating behavior in inverse Heusler compounds from first principles". Computational Materials Science. 70: 145–149. arXiv:1210.5816. doi:10.1016/j.commatsci.2012.12.013. ISSN 0927-0256.

Further readingEdit