Ruin theory

(Redirected from Risk process)

In actuarial science and applied probability, ruin theory (sometimes risk theory[1] or collective risk theory) uses mathematical models to describe an insurer's vulnerability to insolvency/ruin. In such models key quantities of interest are the probability of ruin, distribution of surplus immediately prior to ruin and deficit at time of ruin.

Classical model

edit
 
A sample path of compound Poisson risk process

The theoretical foundation of ruin theory, known as the Cramér–Lundberg model (or classical compound-Poisson risk model, classical risk process[2] or Poisson risk process) was introduced in 1903 by the Swedish actuary Filip Lundberg.[3] Lundberg's work was republished in the 1930s by Harald Cramér.[4]

The model describes an insurance company who experiences two opposing cash flows: incoming cash premiums and outgoing claims. Premiums arrive a constant rate   from customers and claims arrive according to a Poisson process   with intensity   and are independent and identically distributed non-negative random variables   with distribution   and mean   (they form a compound Poisson process). So for an insurer who starts with initial surplus  , the aggregate assets   are given by:[5]

 

The central object of the model is to investigate the probability that the insurer's surplus level eventually falls below zero (making the firm bankrupt). This quantity, called the probability of ultimate ruin, is defined as

 ,

where the time of ruin is   with the convention that  . This can be computed exactly using the Pollaczek–Khinchine formula as[6] (the ruin function here is equivalent to the tail function of the stationary distribution of waiting time in an M/G/1 queue[7])

 

where   is the transform of the tail distribution of  ,

 

and   denotes the  -fold convolution. In the case where the claim sizes are exponentially distributed, this simplifies to[7]

 

Sparre Andersen model

edit

E. Sparre Andersen extended the classical model in 1957[8] by allowing claim inter-arrival times to have arbitrary distribution functions.[9]

 

where the claim number process   is a renewal process and   are independent and identically distributed random variables. The model furthermore assumes that   almost surely and that   and   are independent. The model is also known as the renewal risk model.

Expected discounted penalty function

edit

Michael R. Powers[10] and Gerber and Shiu[11] analyzed the behavior of the insurer's surplus through the expected discounted penalty function, which is commonly referred to as Gerber-Shiu function in the ruin literature and named after actuarial scientists Elias S.W. Shiu and Hans-Ulrich Gerber. It is arguable whether the function should have been called Powers-Gerber-Shiu function due to the contribution of Powers.[10]

In Powers' notation, this is defined as

 ,

where   is the discounting force of interest,   is a general penalty function reflecting the economic costs to the insurer at the time of ruin, and the expectation   corresponds to the probability measure  . The function is called expected discounted cost of insolvency by Powers.[10]

In Gerber and Shiu's notation, it is given as

 ,

where   is the discounting force of interest and   is a penalty function capturing the economic costs to the insurer at the time of ruin (assumed to depend on the surplus prior to ruin   and the deficit at ruin  ), and the expectation   corresponds to the probability measure  . Here the indicator function   emphasizes that the penalty is exercised only when ruin occurs.

It is quite intuitive to interpret the expected discounted penalty function. Since the function measures the actuarial present value of the penalty that occurs at  , the penalty function is multiplied by the discounting factor  , and then averaged over the probability distribution of the waiting time to  . While Gerber and Shiu[11] applied this function to the classical compound-Poisson model, Powers[10] argued that an insurer's surplus is better modeled by a family of diffusion processes.

There are a great variety of ruin-related quantities that fall into the category of the expected discounted penalty function.

Special case Mathematical representation Choice of penalty function
Probability of ultimate ruin    
Joint (defective) distribution of surplus and deficit    
Defective distribution of claim causing ruin    
Trivariate Laplace transform of time, surplus and deficit    
Joint moments of surplus and deficit    

Other finance-related quantities belonging to the class of the expected discounted penalty function include the perpetual American put option,[12] the contingent claim at optimal exercise time, and more.

Recent developments

edit
  • Compound-Poisson risk model with constant interest
  • Compound-Poisson risk model with stochastic interest
  • Brownian-motion risk model
  • General diffusion-process model
  • Markov-modulated risk model
  • Accident probability factor (APF) calculator – risk analysis model (@SBH)

See also

edit

References

edit
  1. ^ Embrechts, P.; Klüppelberg, C.; Mikosch, T. (1997). "1 Risk Theory". Modelling Extremal Events. Stochastic Modelling and Applied Probability. Vol. 33. p. 21. doi:10.1007/978-3-642-33483-2_2. ISBN 978-3-540-60931-5.
  2. ^ Delbaen, F.; Haezendonck, J. (1987). "Classical risk theory in an economic environment". Insurance: Mathematics and Economics. 6 (2): 85. doi:10.1016/0167-6687(87)90019-9.
  3. ^ Lundberg, F. (1903) Approximerad Framställning av Sannolikehetsfunktionen, Återförsäkering av Kollektivrisker, Almqvist & Wiksell, Uppsala.
  4. ^ Blom, G. (1987). "Harald Cramer 1893-1985". The Annals of Statistics. 15 (4): 1335–1350. doi:10.1214/aos/1176350596. JSTOR 2241677.
  5. ^ Kyprianou, A. E. (2006). "Lévy Processes and Applications". Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer Berlin Heidelberg. pp. 1–32. doi:10.1007/978-3-540-31343-4_1. ISBN 978-3-540-31342-7.
  6. ^ Huzak, Miljenko; Perman, Mihael; Šikić, Hrvoje; Vondraček, Zoran (2004). "Ruin Probabilities for Competing Claim Processes". Journal of Applied Probability. 41 (3). Applied Probability Trust: 679–690. doi:10.1239/jap/1091543418. JSTOR 4141346. S2CID 14499808.
  7. ^ a b Rolski, Tomasz; Schmidli, Hanspeter; Schmidt, Volker; Teugels, Jozef (2008). "Risk Processes". Stochastic Processes for Insurance & Finance. Wiley Series in Probability and Statistics. pp. 147–204. doi:10.1002/9780470317044.ch5. ISBN 9780470317044.
  8. ^ Andersen, E. Sparre. "On the collective theory of risk in case of contagion between claims." Transactions of the XVth International Congress of Actuaries. Vol. 2. No. 6. 1957.
  9. ^ Thorin, Olof. "Some comments on the Sparre Andersen model in the risk theory" The ASTIN bulletin: international journal for actuarial studies in non-life insurance and risk theory (1974): 104.
  10. ^ a b c d Powers, M. R. (1995). "A theory of risk, return and solvency". Insurance: Mathematics and Economics. 17 (2): 101–118. doi:10.1016/0167-6687(95)00006-E.
  11. ^ a b Gerber, H. U.; Shiu, E. S. W. (1998). "On the Time Value of Ruin". North American Actuarial Journal. 2: 48–72. doi:10.1080/10920277.1998.10595671. S2CID 59054002.
  12. ^ Gerber, H.U.; Shiu, E.S.W. (1997). "From ruin theory to option pricing" (PDF). AFIR Colloquium, Cairns, Australia 1997.

Further reading

edit
  • Gerber, H.U. (1979). An Introduction to Mathematical Risk Theory. Philadelphia: S.S. Heubner Foundation Monograph Series 8.
  • Asmussen S., Albrecher H. (2010). Ruin Probabilities, 2nd Edition. Singapore: World Scientific Publishing Co.