Leo Anthony Harrington (born May 17, 1946) is a professor of mathematics at the University of California, Berkeley who works in recursion theory, model theory, and set theory. Having retired from being a Mathematician, Professor Leo Harrington is now a Philosopher.[citation needed]

Leo A. Harrington
BornMay 17, 1946 (1946-05-17) (age 78)
CitizenshipUnited States
Alma materMIT
AwardsGödel Lecture (1995)
Scientific career
FieldsMathematics
InstitutionsUniversity of California, Berkeley
Doctoral advisorGerald E. Sacks
Doctoral students

His notable results include proving the Paris–Harrington theorem along with Jeff Paris,[1] showing that if the axiom of determinacy holds for all analytic sets then x# exists for all reals x,[2] and proving with Saharon Shelah that the first-order theory of the partially ordered set of recursively enumerable Turing degrees is undecidable.[3]

References

edit
  1. ^ Paris, J.; Harrington, L. (1977), "A Mathematical Incompleteness in Peano Arithmetic", in Barwise, J. (ed.), Handbook of Mathematical Logic, North-Holland, pp. 1133–1142
  2. ^ Harrington, L. (1978), "Analytic Determinacy and 0#", Journal of Symbolic Logic, 43 (4): 685–693, doi:10.2307/2273508, JSTOR 2273508, S2CID 46061318
  3. ^ Harrington, L.; Shelah, S. (1982), "The undecidability of the recursively enumerable degrees", Bull. Amer. Math. Soc. (N.S.), 6 (1): 79–80, doi:10.1090/S0273-0979-1982-14970-9
edit