Positive harmonic function

In mathematics, a positive harmonic function on the unit disc in the complex numbers is characterized as the Poisson integral of a finite positive measure on the circle. This result, the Herglotz-Riesz representation theorem, was proved independently by Gustav Herglotz and Frigyes Riesz in 1911. It can be used to give a related formula and characterization for any holomorphic function on the unit disc with positive real part. Such functions had already been characterized in 1907 by Constantin Carathéodory in terms of the positive definiteness of their Taylor coefficients.

Herglotz-Riesz representation theorem for harmonic functions edit

A positive function f on the unit disk with f(0) = 1 is harmonic if and only if there is a probability measure μ on the unit circle such that

 

The formula clearly defines a positive harmonic function with f(0) = 1.

Conversely if f is positive and harmonic and rn increases to 1, define

 

Then

 

where

 

is a probability measure.

By a compactness argument (or equivalently in this case Helly's selection theorem for Stieltjes integrals), a subsequence of these probability measures has a weak limit which is also a probability measure μ.

Since rn increases to 1, so that fn(z) tends to f(z), the Herglotz formula follows.

Herglotz-Riesz representation theorem for holomorphic functions edit

A holomorphic function f on the unit disk with f(0) = 1 has positive real part if and only if there is a probability measure μ on the unit circle such that

 

This follows from the previous theorem because:

  • the Poisson kernel is the real part of the integrand above
  • the real part of a holomorphic function is harmonic and determines the holomorphic function up to addition of a scalar
  • the above formula defines a holomorphic function, the real part of which is given by the previous theorem

Carathéodory's positivity criterion for holomorphic functions edit

Let

 

be a holomorphic function on the unit disk. Then f(z) has positive real part on the disk if and only if

 

for any complex numbers λ0, λ1, ..., λN, where

 

for m > 0.

In fact from the Herglotz representation for n > 0

 

Hence

 

Conversely, setting λn = zn,

 

See also edit

References edit

  • Carathéodory, C. (1907), "Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen", Math. Ann., 64: 95–115, doi:10.1007/bf01449883, S2CID 116695038
  • Duren, P. L. (1983), Univalent functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, ISBN 0-387-90795-5
  • Herglotz, G. (1911), "Über Potenzreihen mit positivem, reellen Teil im Einheitskreis", Ber. Verh. Sachs. Akad. Wiss. Leipzig, 63: 501–511
  • Pommerenke, C. (1975), Univalent functions, with a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher, vol. 15, Vandenhoeck & Ruprecht
  • Riesz, F. (1911), "Sur certains systèmes singuliers d'équations intégrale", Ann. Sci. Éc. Norm. Supér., 28: 33–62, doi:10.24033/asens.633