File:Tusi couple ellipses.gif

Tusi_couple_ellipses.gif(500 × 500 pixels, file size: 6.4 MB, MIME type: image/gif, looped, 340 frames, 6.8 s)

Summary

Description
English: Tusi couple animation
  big circle with radius R; small circle with radius r; with: 0.5·R = r
  ellipse, curtate ("contracted") hypotrochoid with d<r
  ellipse, curtate ("contracted") hypotrochoid with d<r
  line segment (degenerated ellipse), common hypocycloid with d=r
  ellipse, prolate ("extended") hypotrochoid with d>r
  circle, trivial hypotrochoid with d=0
  touching point of both circles / instant centre of rotation
Deutsch: Cardanische Kreise - Animation
  Großer Kreis mit Radius R; kleiner Kreis mit Radius r; es gilt: 0.5·R = r
  Ellipse, Hypotrochoide mit d<r (verkürzt)
  Ellipse, Hypotrochoide mit d<r (verkürzt)
  Strecke (Geometrie) (Degenererierte Ellipse), Hypozykloide with d=r
  Ellipse, Hypotrochoide mit d>r (verlängert)
  Kreis, triviale Hypotrochoide with d=0
Date
Source Own work
Author Jahobr
Other versions
GIF development
InfoField
 
This diagram was created with MATLAB by Jahobr.
Source code
InfoField

MATLAB code

function Tusi_couple_ellipses()
% source code for Tusi_couple_ellipses
% produces a GIF and a SVG
%
% 2017-04-10 Jahobr (update 14.03.2021)

rBase = 1; % base radius
nFrames = 340;
angleSmall = linspace(0,2*pi,nFrames+1); % define gear position in frames
angleSmall = angleSmall(1:end-1); % remove last frame, it would be double

figHandle = figure(15674455);
whitebg(figHandle,[246 248 249]./250) % color backbground
clf
axesHandle = axes;
hold(axesHandle,'on')
set(figHandle, 'Units','pixel');
set(figHandle, 'Position',[1 1 1000 1000]); % big start image for antialiasing later [x y width height]
set(axesHandle,'Position',[-0.05 -0.05 1.1 1.1]); % stretch axis bigger as figure, easy way to get rid of ticks [x y width height]
xlim([-1.2 1.2]);
ylim([-1.2 1.2]);
axis equal; drawnow;
axis off % invisible axes (no ticks)
set(figHandle, 'Color',[1 1 1]); % white background

reducedRGBimage = uint8(ones(500,500,3,nFrames)); % allocate

for iFrame = 1:nFrames
    
    currentAngle = angleSmall(iFrame);
    
    cla(axesHandle) % fresh frame
    
    
    xs = cos(currentAngle)*0.5*rBase;
    ys = sin(currentAngle)*0.5*rBase;
    
    circle_patch(0,0,rBase,[1 1 1]) % outer circle backbground
    circle_patch(xs,ys,rBase/2,[0.95 0.95 0.95])  % inner circle backbground
    
    plot(rBase*cos(currentAngle),rBase*sin(currentAngle),'.m','MarkerSize',40) % touching point / Instant centre of rotation
    plot(0,0,'+','MarkerSize',15,'LineWidth',4,'Color',[0.5 0.5 0.5]); % center marker
    
    %% draw center circle 
    colD    = [0.5 0.5 0.5]; %
    circle(0,0,rBase/2,colD,4);
    
    
    %% draw inner ellipse
    colG = [0.1 0.7 0.1]; % green
    randiusA = 0.6;
    ellipse(0,0,randiusA,1-randiusA,colG);
    xpG = randiusA*cos(currentAngle);
    ypG =(rBase-randiusA)*sin(currentAngle);
    plot([xs xpG],[ys ypG],':','LineWidth',4,'Color',colG); % radial line

    
    %% draw medium ellipse
    colC    = [0  0.9 0.9]; % cyan    
    randiusA = 0.85;
    h(3) = ellipse(0,0,randiusA,rBase-randiusA,colC,pi/4);
    xpC = xs+sin(currentAngle)*(randiusA-rBase/2);
    ypC = ys+cos(currentAngle)*(randiusA-rBase/2);
    plot([xs xpC],[ys ypC],':','LineWidth',4,'Color',colC); % radial line
    
    %% draw outer ellipse
    colR     = [1 0 0]; % red
    randiusA = 1.35;
    h(1) = ellipse(0,0,randiusA,rBase-randiusA,colR,-pi/4);
    xpR = xs-sin(currentAngle)*(randiusA-rBase/2);
    ypR = ys-cos(currentAngle)*(randiusA-rBase/2);
    plot([xs xpR],[ys ypR],':','LineWidth',4,'Color',colR); % radial line
    
    %% draw verical Line (degenerated ellipse)
    plot([0 0],[rBase,-rBase],'-b','LineWidth',4) % vertical line
    plot([xs 0],[ys rBase*sin(currentAngle)],':b','LineWidth',4); % radial line

    %% final touches
    
    plot(xpG,ypG,'.','MarkerSize',40,'LineWidth',4,'Color',colG); % tracking point
    plot(xpC,ypC,'.','MarkerSize',40,'LineWidth',4,'Color',colC); % tracking point
    plot(xpR,ypR,'.','MarkerSize',40,'LineWidth',4,'Color',colR); % tracking point
    
    circle(0,0,rBase,[0 0 0],5) % outer circle
    circle(xs,ys,rBase/2,[0 0 0],5)  % inner circle
    plot([xs 0],[ys rBase*sin(currentAngle)],'.:b','MarkerSize',40,'LineWidth',4); % tracking point on top of circles
    plot(xs,ys,'.','MarkerSize',40,'LineWidth',4,'Color',colD); % tracking point
    
    

    %% save animation
    drawnow
    pause(0.01)
    saveName = 'Tusi_couple_ellipses';
    f = getframe(figHandle);
    reducedRGBimage(:,:,:,iFrame) = imReduceSize(f.cdata,2); % the size reduction: adds antialiasing
%     
    if iFrame == 72
        plot2svg([saveName '.svg'],figHandle) % by Juerg Schwizer, See http://www.zhinst.com/blogs/schwizer/
    end

end

map = createImMap(reducedRGBimage,128,[0 0 0; 1 1 1; 0.5 0.5 0.5; 0.95 0.95 0.95; colD; colG: colC; colR]); % colormap

im = uint8(ones(500,500,1,nFrames)); % allocate
for iFrame = 1:nFrames
    im(:,:,1,iFrame) = rgb2ind(reducedRGBimage(:,:,:,iFrame),map,'nodither');
end

imwrite(im,map,[saveName '.gif'],'DelayTime',1/50,'LoopCount',inf) % save gif1
disp([saveName '.gif  has ' num2str(numel(im)/10^6 ,4) ' Megapixels']) % Category:Animated GIF files exceeding the 100 MP limit

return
%%

function circle(x,y,r,col,linw)
% x coordinates of the center
% y coordinates of the center
% r is the radius of the circle
angleOffPoints = linspace(0,2*pi,300);
xc = x + r*cos(angleOffPoints);
yc = y + r*sin(angleOffPoints);
plot(xc,yc,'k','LineWidth',linw,'Color',col);

function circle_patch(x,y,r,col)
% x coordinates of the center
% y coordinates of the center
% r is the radius of the circle
angleOffPoints = linspace(0,2*pi,300);
xc = x + r*cos(angleOffPoints);
yc = y + r*sin(angleOffPoints);
patch(xc,yc,col,'EdgeColor','none') % 

function h = ellipse(x,y,a,b,col,theta)
% x coordinates of the center
% y coordinates of the center
% a radius1
% b radius2
if nargin <= 5
    theta = 0;
end
angleOffPoints = linspace(0,2*pi,300);
xe = x + a*cos(angleOffPoints);
ye = y + b*sin(angleOffPoints);

xe_rot =  xe*cos(theta) - ye*sin(theta);
ye_rot =  xe*sin(theta) + ye*cos(theta);
h = plot(xe_rot,ye_rot,'-','LineWidth',4,'Color',col);

function im = imReduceSize(im,redSize)
% Input:
%  im:      image, [imRows x imColumns x nChannel x nStack] (unit8)
%                      imRows, imColumns: must be divisible by redSize
%                      nChannel: usually 3 (RGB) or 1 (grey)
%                      nStack:   number of stacked images
%                                usually 1; >1 for animations
%  redSize: 2 = half the size (quarter of pixels)
%           3 = third the size (ninth of pixels)
%           ... and so on
% Output:
%  im:     [imRows/redSize x imColumns/redSize x nChannel x nStack] (unit8)
%
% an alternative is: imNew = imresize(im,1/reduceImage,'bilinear');
%        BUT 'bicubic' & 'bilinear'  produces fuzzy lines
%        IMHO this function produces nicer results as "imresize"
 
[nRow,nCol,nChannel,nStack] = size(im);

if redSize==1;  return;  end % nothing to do
if redSize~=round(abs(redSize));             error('"redSize" must be a positive integer');  end
if rem(nRow,redSize)~=0;     error('number of pixel-rows must be a multiple of "redSize"');  end
if rem(nCol,redSize)~=0;  error('number of pixel-columns must be a multiple of "redSize"');  end

nRowNew = nRow/redSize;
nColNew = nCol/redSize;

im = double(im).^2; % brightness rescaling from "linear to the human eye" to the "physics domain"; see youtube: /watch?v=LKnqECcg6Gw
im = reshape(im, nRow, redSize, nColNew*nChannel*nStack); % packets of width redSize, as columns next to each other
im = sum(im,2); % sum in all rows. Size of result: [nRow, 1, nColNew*nChannel]
im = permute(im, [3,1,2,4]); % move singleton-dimension-2 to dimension-3; transpose image. Size of result: [nColNew*nChannel, nRow, 1]
im = reshape(im, nColNew*nChannel*nStack, redSize, nRowNew); % packets of width redSize, as columns next to each other
im = sum(im,2); % sum in all rows. Size of result: [nColNew*nChannel, 1, nRowNew]
im = permute(im, [3,1,2,4]); % move singleton-dimension-2 to dimension-3; transpose image back. Size of result: [nRowNew, nColNew*nChannel, 1]
im = reshape(im, nRowNew, nColNew, nChannel, nStack); % putting all channels (rgb) back behind each other in the third dimension
im = uint8(sqrt(im./redSize^2)); % mean; re-normalize brightness: "scale linear to the human eye"; back in uint8


function map = createImMap(imRGB,nCol,startMap)
% createImMap creates a color-map including predefined colors.
% "rgb2ind" creates a map but there is no option to predefine some colors,
%         and it does not handle stacked images.
% Input:
%   imRGB:     image, [imRows x imColumns x 3(RGB) x nStack] (unit8)
%   nCol:      total number of colors the map should have, [integer]
%   startMap:  predefined colors; colormap format, [p x 3] (double)

imRGB = permute(imRGB,[1 2 4 3]); % step1; make unified column-image (handling possible nStack)
imRGBcolumn = reshape(imRGB,[],1,3,1); % step2; make unified column-image

fullMap = double(permute(imRGBcolumn,[1 3 2]))./255; % "column image" to color map 
[fullMap,~,imMapColumn] = unique(fullMap,'rows'); % find all unique colors; create indexed colormap-image
% "cmunique" could be used but is buggy and inconvenient because the output changes between "uint8" and "double"

nColFul = size(fullMap,1);
nColStart = size(startMap,1);
disp(['Number of colors: ' num2str(nColFul) ' (including ' num2str(nColStart) ' self defined)']);

if nCol<=nColStart;  error('Not enough colors');        end
if nCol>nColFul;   warning('More colors than needed');  end

isPreDefCol = false(size(imMapColumn)); % init
 
for iCol = 1:nColStart
    diff = sum(abs(fullMap-repmat(startMap(iCol,:),nColFul,1)),2); % difference between a predefined and all colors
    [mDiff,index] = min(diff); % find matching (or most similar) color
    if mDiff>0.05 % color handling is not precise
        warning(['Predefined color ' num2str(iCol) ' does not appear in image'])
        continue
    end
    isThisPreDefCol = imMapColumn==index; % find all pixel with predefined color
    disp([num2str(sum(isThisPreDefCol(:))) ' pixel have predefined color ' num2str(iCol)]);
    isPreDefCol = or(isPreDefCol,isThisPreDefCol); % combine with overall list
end
[~,mapAdditional] = rgb2ind(imRGBcolumn(~isPreDefCol,:,:),nCol-nColStart,'nodither'); % create map of remaining colors
map = [startMap;mapAdditional];

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

11 April 2017

image/gif

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current22:49, 14 March 2021Thumbnail for version as of 22:49, 14 March 2021500 × 500 (6.4 MB)Jahobrquality update
12:06, 11 April 2017Thumbnail for version as of 12:06, 11 April 2017500 × 500 (2.8 MB)Jahobrlighter background
11:34, 11 April 2017Thumbnail for version as of 11:34, 11 April 2017500 × 500 (2.89 MB)Jahobr{{Information |Description ={{en|1=Tusi couple ellipses}} |Source ={{own}} |Author =Jahobr |Date =2017-04-11 |Permission = |other_versions = }} Category:Tusi-couple Category:Ellipse construction
The following pages on the English Wikipedia use this file (pages on other projects are not listed):

Global file usage

The following other wikis use this file: