File:Spring resonance.gif

Spring_resonance.gif (338 × 343 pixels, file size: 308 KB, MIME type: image/gif, looped, 100 frames, 5.0 s)

Summary

Description
Deutsch: getriebener Oszillator in Resonanz, omega_drive=omega0*1
Date
Source Own work
Author Jkrieger

base upon work by Oleg Alexandrov: [Simple harmonic oscillator.gif]

 
This diagram was created with MATLAB.

Source code

function main()
 
% colors
   red      = [0.867    0.06    0.14];
   blue     = [0        129     205]/256;
   green    = [0        200     70]/256;
   black    = [0        0       0];
   white    = [1        1       1]*0.99;
   cardinal = [196      30      58]/256;
   cerulean = [0        123     167]/256;
   denim    = [21       96      189]/256;
   cobalt   = [0        71      171]/256;
   pblue    = [0        49      83]/256;
   teracotta= [226      114     91]/256;
   tene     = [205      87      0]/256;
   wall_color   = pblue;
   spring_color = cobalt;
   mass_color   = tene;
   exc_color=cardinal;
   a=0.65; bmass_color   = a*mass_color+(1-a)*black;
   % linewidth and fontsize
   lw=2;
   fs=20;
 
   ww = 0.5;  % wall width
   ms = 0.25; % the size of the mass        
   sw=0.1;    % spring width
   curls = 5;
   exc_size=0.05;
   plot_width=1.5; % width of plots
   
   K_osz = 0.05; % excitation amplitude
   omega =1; % excitation frequency
   omega0=1; % eigen frequency
   gamma=0.02; % damping factor
   
   filename='spring_resonance.gif';
   
   frames=100;

 
   options = odeset('RelTol',1e-4,'AbsTol',1e-4);
   [T,YODE] = ode45(@(t,y) dampedoszi(t,y,K_osz, omega, omega0, gamma),[0 20*pi],[0 0],options);
   figure(2)
   plot(T,YODE(:,1));

   A = 0.2; % the amplitude of spring oscillations
   B = -1; % the y coordinate of the base state (the origin is higher, at the wall)
 
   %  Each of the small lines has length l
   l = 0.05;
 
   N = length(T);  % times per oscillation 
   No = 1; % number of oscillations
   for f = 1:frames
      i=floor(length(T)/frames*f);  
      % set up the plotting window
      figure(1); clf; hold on; axis equal; axis off;
 
 
      t = T(i); % current time
      
      POSW=K_osz*sin(omega*t); % position of exciter with cos-excitation is a sine!
      
      H= B+YODE(i);      % position of the mass
      %H=K/sqrt((1-omega).^2+(2*gamma*omega).^2)*cos(
      
      
 
      % plot the spring from Start to End
      Start = [0, POSW]; End = [0, POSW+H];
      [X, Y]=do_plot_spring(Start, End, curls, sw);
      plot(X, Y, 'linewidth', lw, 'color', spring_color); 
 
      % Here we cheat. We modify the point B so that the mass is attached exactly at the end of the
      % spring. This should not be necessary. I am too lazy to to the exact calculation.
      K = length(X); End(1) = X(K); End(2) = Y(K);
 
      % plot the wall from which the spring is hanging
      plot_wall(-ww/2, ww/2, l, lw, wall_color);
 
      % plot the mass at the end of the spring
      X=[-ms/2 ms/2 ms/2 -ms/2 -ms/2 ms/2]+End(1); Y=[0 0 -ms -ms 0 0]+End(2);
      H=fill(X, Y, mass_color, 'EdgeColor', bmass_color, 'linewidth', lw);
 
      % plot exciter
      rectangle('Position',[0-exc_size/2,POSW-exc_size/2,exc_size,exc_size],  'FaceColor',exc_color)
      
          % the bounding box
          Sx = -0.4*ww;  Sy = B-max(abs(YODE(:,1)))-ms-0.05;
          Lx = ww+l+plot_width; Ly=l+K_osz;
          axis([Sx, Lx, Sy, Ly]);

          % plot amplitude time course
          plot(ww+T(1:i)./max(T).*plot_width, B+YODE(1:i,1), 'b-');
          line([ww ww+plot_width], [B B], 'Color', black);
          plot(ww+(T(1:i)-1)./(max(T)+1).*plot_width, K_osz*cos(omega*T(1:i)), 'r-');
          line([ww ww+plot_width], [0 0], 'Color', black);
          
          % plot resonance curve
          omeg=0.05:0.01:2;
          phase=atan2(-2.*gamma.*omeg, (omega0.^2-omeg.^2));
          amplitude=K./sqrt((omega0^2-omeg.^2).^2+(2*gamma*omeg).^2);
          plot(ww+omeg./max(omeg).*plot_width, B/2+B/3*phase/abs(max(phase)-min(phase)), 'g-')
          plot(ww+omeg./max(omeg).*plot_width, B/2-B/3*amplitude/abs(max(amplitude)-min(amplitude)), 'r-')
          line([ww ww+plot_width], [B/2 B/2], 'Color', black);
          rx=ww+omega/max(omeg).*plot_width;
          line([rx rx], [B/2 B/2-B/3], 'Color', cardinal)
          
 
      frame=getframe;
      [im,map1] = rgb2ind(frame.cdata,32,'nodither');
      if f==1
          map=map1;
          imwrite(im, map, filename, 'gif', 'WriteMode', 'overwrite', 'DelayTime', 0.05, 'LoopCount', Inf);
      else
          im= rgb2ind(frame.cdata,map);
          imwrite(im, map, filename, 'gif', 'WriteMode', 'append', 'DelayTime', 0.05);
      end
      
          
      disp(sprintf('Spring_frame%d', 1000+f)); %show the frame number we are at
 
      pause(0.1);
 
   end
 
function dy = dampedoszi(t,y, K, omega, omega0, gamma);
    dy = zeros(2,1);    % a column vector
    dy(1) = y(2);
    dy(2) = K*cos(omega*t)-2*gamma*y(2)-omega0^2*y(1);
 
function dy = damper(t,y, K, omega, omega0, gamma);
    dy = zeros(2,1);    % a column vector
    dy(1) = y(2);
    dy(2) = K*cos(omega*t);


 
function [X, Y]=do_plot_spring(A, B, curls, sw);
%  plot a 3D spring, then project it onto 2D. theta controls the angle of projection.
%  The string starts at A and ends at B
 
   % will rotate by theta when projecting from 1D to 2D
   theta=pi/6;
   Npoints = 500;
 
   % spring length
   D = sqrt((A(1)-B(1))^2+(A(2)-B(2))^2);
 
   X=linspace(0, 1, Npoints);
 
   XX = linspace(-pi/2, 2*pi*curls+pi/2, Npoints);
   Y=-sw*cos(XX);
   Z=sw*sin(XX);
 
%  b gives the length of the small straight segments at the ends
%  of the spring (to which the wall and the mass are attached)
   b= 0.05; 
 
% stretch the spring in X to make it of length D - 2*b
   N = length(X);
   X = (D-2*b)*(X-X(1))/(X(N)-X(1));
 
% shift by b to the right and add the two small segments of length b
   X=[0, X+b X(N)+2*b]; Y=[Y(1) Y Y(N)]; Z=[Z(1) Z Z(N)]; 
 
   % project the 3D spring to 2D
   M=[cos(theta) sin(theta); -sin(theta) cos(theta)];
   N=length(X);
   for i=1:N;
      V=M*[X(i), Z(i)]';
      X(i)=V(1); Z(i)=V(2);
   end
 
%  shift the spring to start from 0
   X = X-X(1);
 
% now that we have the horisontal spring (X, Y) of length D,
% rotate and translate it to go from A to B
   Theta = atan2(B(2)-A(2), B(1)-A(1));
   M=[cos(Theta) -sin(Theta); sin(Theta) cos(Theta)];
 
   N=length(X);
   for i=1:N;
      V=M*[X(i), Y(i)]'+A';
      X(i)=V(1); Y(i)=V(2);
   end
 
function plot_wall(S, E, l, lw, wall_color)
 
%  Plot a wall from S to E.
   no=20; spacing=(E-S)/(no-1);
 
   plot([S, E], [0, 0], 'linewidth', 1.8*lw, 'color', wall_color);

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

29 January 2012

image/gif

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current16:19, 29 January 2012Thumbnail for version as of 16:19, 29 January 2012338 × 343 (308 KB)Jkrieger
No pages on the English Wikipedia use this file (pages on other projects are not listed).

Global file usage

The following other wikis use this file: