2-EPT probability density function

In probability theory, a 2-EPT probability density function is a class of probability density functions on the real line. The class contains the density functions of all distributions that have characteristic functions that are strictly proper rational functions (i.e., the degree of the numerator is strictly less than the degree of the denominator).

2-EPT Density Function
Parameters

Support
PDF
CDF
Mean
CF

Definition

edit

A 2-EPT probability density function is a probability density function on   with a strictly proper rational characteristic function. On either   or   these probability density functions are exponential-polynomial-trigonometric (EPT) functions.

Any EPT density function on   can be represented as

 

where e represents a matrix exponential,   are square matrices,   are column vectors and   are row vectors. Similarly the EPT density function on   is expressed as

 

The parameterization   is the minimal realization[1] of the 2-EPT function.

The general class of probability measures on   with (proper) rational characteristic functions are densities corresponding to mixtures of the pointmass at zero ("delta distribution") and 2-EPT densities. Unlike phase-type and matrix geometric[2] distributions, the 2-EPT probability density functions are defined on the whole real line. It has been shown that the class of 2-EPT densities is closed under many operations and using minimal realizations these calculations have been illustrated for the two-sided framework in Sexton and Hanzon.[3] The most involved operation is the convolution of 2-EPT densities using state space techniques. Much of the work centers on the ability to decompose the rational characteristic function into the sum of two rational functions with poles located in either the open left or open right half plane. The variance-gamma distribution density has been shown to be a 2-EPT density under a parameter restriction.[4]

Notes

edit
  1. ^ Kailath, T. (1980) Linear Systems, Prentice Hall, 1980
  2. ^ Neuts, M. "Probability Distributions of Phase Type", Liber Amicorum Prof. Emeritus H. Florin pages 173-206, Department of Mathematics, University of Louvain, Belgium 1975
  3. ^ Sexton, C. and Hanzon,B.,"State Space Calculations for two-sided EPT Densities with Financial Modelling Applications", www.2-ept.com
  4. ^ Madan, D., Carr, P., Chang, E. (1998) "The Variance Gamma Process and Option Pricing", European Finance Review 2: 79–105
edit