In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Alexander Grothendieck[1] to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. After Grothendieck developed the general theory of descent,[2] and Giraud the general theory of stacks,[3] the notion of algebraic stacks was defined by Michael Artin.[4]

Definition edit

Motivation edit

One of the motivating examples of an algebraic stack is to consider a groupoid scheme   over a fixed scheme  . For example, if   (where   is the group scheme of roots of unity),  ,   is the projection map,   is the group action

 

and   is the multiplication map

 

on  . Then, given an  -scheme  , the groupoid scheme   forms a groupoid (where   are their associated functors). Moreover, this construction is functorial on   forming a contravariant 2-functor

 

where   is the 2-category of small categories. Another way to view this is as a fibred category   through the Grothendieck construction. Getting the correct technical conditions, such as the Grothendieck topology on  , gives the definition of an algebraic stack. For instance, in the associated groupoid of  -points for a field  , over the origin object   there is the groupoid of automorphisms  . However, in order to get an algebraic stack from  , and not just a stack, there are additional technical hypotheses required for  .[5]

Algebraic stacks edit

It turns out using the fppf-topology[6] (faithfully flat and locally of finite presentation) on  , denoted  , forms the basis for defining algebraic stacks. Then, an algebraic stack[7] is a fibered category

 

such that

  1.   is a category fibered in groupoids, meaning the overcategory for some   is a groupoid
  2. The diagonal map   of fibered categories is representable as algebraic spaces
  3. There exists an   scheme   and an associated 1-morphism of fibered categories   which is surjective and smooth called an atlas.

Explanation of technical conditions edit

Using the fppf topology edit

First of all, the fppf-topology is used because it behaves well with respect to descent. For example, if there are schemes   and  can be refined to an fppf-cover of  , if   is flat, locally finite type, or locally of finite presentation, then   has this property.[8] this kind of idea can be extended further by considering properties local either on the target or the source of a morphism  . For a cover   we say a property   is local on the source if

  has   if and only if each   has  .

There is an analogous notion on the target called local on the target. This means given a cover  

  has   if and only if each   has  .

For the fppf topology, having an immersion is local on the target.[9] In addition to the previous properties local on the source for the fppf topology,   being universally open is also local on the source.[10] Also, being locally Noetherian and Jacobson are local on the source and target for the fppf topology.[11] This does not hold in the fpqc topology, making it not as "nice" in terms of technical properties. Even though this is true, using algebraic stacks over the fpqc topology still has its use, such as in chromatic homotopy theory. This is because the Moduli stack of formal group laws   is an fpqc-algebraic stack[12]pg 40.

Representable diagonal edit

By definition, a 1-morphism   of categories fibered in groupoids is representable by algebraic spaces[13] if for any fppf morphism   of schemes and any 1-morphism  , the associated category fibered in groupoids

 

is representable as an algebraic space,[14][15] meaning there exists an algebraic space

 

such that the associated fibered category  [16] is equivalent to  . There are a number of equivalent conditions for representability of the diagonal[17] which help give intuition for this technical condition, but one of main motivations is the following: for a scheme   and objects   the sheaf   is representable as an algebraic space. In particular, the stabilizer group for any point on the stack   is representable as an algebraic space. Another important equivalence of having a representable diagonal is the technical condition that the intersection of any two algebraic spaces in an algebraic stack is an algebraic space. Reformulated using fiber products

 

the representability of the diagonal is equivalent to   being representable for an algebraic space  . This is because given morphisms   from algebraic spaces, they extend to maps   from the diagonal map. There is an analogous statement for algebraic spaces which gives representability of a sheaf on   as an algebraic space.[18]

Note that an analogous condition of representability of the diagonal holds for some formulations of higher stacks[19] where the fiber product is an  -stack for an  -stack  .

Surjective and smooth atlas edit

2-Yoneda lemma edit

The existence of an   scheme   and a 1-morphism of fibered categories   which is surjective and smooth depends on defining a smooth and surjective morphisms of fibered categories. Here   is the algebraic stack from the representable functor   on   upgraded to a category fibered in groupoids where the categories only have trivial morphisms. This means the set

 

is considered as a category, denoted  , with objects in   as   morphisms

 

and morphisms are the identity morphism. Hence

 

is a 2-functor of groupoids. Showing this 2-functor is a sheaf is the content of the 2-Yoneda lemma. Using the Grothendieck construction, there is an associated category fibered in groupoids denoted  .

Representable morphisms of categories fibered in groupoids edit

To say this morphism   is smooth or surjective, we have to introduce representable morphisms.[20] A morphism   of categories fibered in groupoids over   is said to be representable if given an object   in   and an object   the 2-fibered product

 

is representable by a scheme. Then, we can say the morphism of categories fibered in groupoids   is smooth and surjective if the associated morphism

 

of schemes is smooth and surjective.

Deligne-Mumford stacks edit

Algebraic stacks, also known as Artin stacks, are by definition equipped with a smooth surjective atlas  , where   is the stack associated to some scheme  . If the atlas   is moreover étale, then   is said to be a Deligne-Mumford stack. The subclass of Deligne-Mumford stacks is useful because it provides the correct setting for many natural stacks considered, such as the moduli stack of algebraic curves. In addition, they are strict enough that object represented by points in Deligne-Mumford stacks do not have infinitesimal automorphisms. This is very important because infinitesimal automorphisms make studying the deformation theory of Artin stacks very difficult. For example, the deformation theory of the Artin stack  , the moduli stack of rank   vector bundles, has infinitesimal automorphisms controlled partially by the Lie algebra  . This leads to an infinite sequence of deformations and obstructions in general, which is one of the motivations for studying moduli of stable bundles. Only in the special case of the deformation theory of line bundles   is the deformation theory tractable, since the associated Lie algebra is abelian.

Note that many stacks cannot be naturally represented as Deligne-Mumford stacks because it only allows for finite covers, or, algebraic stacks with finite covers. Note that because every Etale cover is flat and locally of finite presentation, algebraic stacks defined with the fppf-topology subsume this theory; but, it is still useful since many stacks found in nature are of this form, such as the moduli of curves  . Also, the differential-geometric analogue of such stacks are called orbifolds. The Etale condition implies the 2-functor

 

sending a scheme to its groupoid of  -torsors is representable as a stack over the Etale topology, but the Picard-stack   of  -torsors (equivalently the category of line bundles) is not representable. Stacks of this form are representable as stacks over the fppf-topology. Another reason for considering the fppf-topology versus the etale topology is over characteristic   the Kummer sequence

 

is exact only as a sequence of fppf sheaves, but not as a sequence of etale sheaves.

Defining algebraic stacks over other topologies edit

Using other Grothendieck topologies on   gives alternative theories of algebraic stacks which are either not general enough, or don't behave well with respect to exchanging properties from the base of a cover to the total space of a cover. It is useful to recall there is the following hierarchy of generalization

 

of big topologies on  .

Structure sheaf edit

The structure sheaf of an algebraic stack is an object pulled back from a universal structure sheaf   on the site  .[21] This universal structure sheaf[22] is defined as

 

and the associated structure sheaf on a category fibered in groupoids

 

is defined as

 

where   comes from the map of Grothendieck topologies. In particular, this means is   lies over  , so  , then  . As a sanity check, it's worth comparing this to a category fibered in groupoids coming from an  -scheme   for various topologies.[23] For example, if

 

is a category fibered in groupoids over  , the structure sheaf for an open subscheme   gives

 

so this definition recovers the classic structure sheaf on a scheme. Moreover, for a quotient stack  , the structure sheaf this just gives the  -invariant sections

 

for   in  .[24][25]

Examples edit

Classifying stacks edit

Many classifying stacks for algebraic groups are algebraic stacks. In fact, for an algebraic group space   over a scheme   which is flat of finite presentation, the stack   is algebraic[4]theorem 6.1.

See also edit

References edit

  1. ^ A'Campo, Norbert; Ji, Lizhen; Papadopoulos, Athanase (2016-03-07). "On Grothendieck's construction of Teichmüller space". arXiv:1603.02229 [math.GT].
  2. ^ Grothendieck, Alexander; Raynaud, Michele (2004-01-04). "Revêtements étales et groupe fondamental (SGA 1). Expose VI: Catégories fibrées et descente". arXiv:math.AG/0206203.
  3. ^ Giraud, Jean (1971). "II. Les champs". Cohomologie non abelienne. Grundlehren der mathematischen Wissenschaften. Vol. 179. pp. 64–105. doi:10.1007/978-3-662-62103-5. ISBN 978-3-540-05307-1.
  4. ^ a b Artin, M. (1974). "Versal deformations and algebraic stacks". Inventiones Mathematicae. 27 (3): 165–189. Bibcode:1974InMat..27..165A. doi:10.1007/bf01390174. ISSN 0020-9910. S2CID 122887093.
  5. ^ "Section 92.16 (04T3): From an algebraic stack to a presentation—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-08-29.
  6. ^ "Section 34.7 (021L): The fppf topology—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-08-29.
  7. ^ "Section 92.12 (026N): Algebraic stacks—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-08-29.
  8. ^ "Lemma 35.11.8 (06NB)—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-08-29.
  9. ^ "Section 35.21 (02YL): Properties of morphisms local in the fppf topology on the target—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-08-29.
  10. ^ "Section 35.25 (036M): Properties of morphisms local in the fppf topology on the source—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-08-29.
  11. ^ "Section 35.13 (034B): Properties of schemes local in the fppf topology—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-08-29.
  12. ^ Goerss, Paul. "Quasi-coherent sheaves on the Moduli Stack of Formal Groups" (PDF). Archived (PDF) from the original on 29 August 2020.
  13. ^ "Section 92.9 (04SX): Morphisms representable by algebraic spaces—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-08-29.
  14. ^ "Section 92.7 (04SU): Split categories fibred in groupoids—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-08-29.
  15. ^ "Section 92.8 (02ZV): Categories fibred in groupoids representable by algebraic spaces—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-08-29.
  16. ^   is the embedding sending a set   to the category of objects   and only identity morphisms. Then, the Grothendieck construction can be applied to give a category fibered in groupoids
  17. ^ "Lemma 92.10.11 (045G)—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-08-29.
  18. ^ "Section 78.5 (046I): Bootstrapping the diagonal—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-08-29.
  19. ^ Simpson, Carlos (1996-09-17). "Algebraic (geometric) n-stacks". arXiv:alg-geom/9609014.
  20. ^ "Section 92.6 (04ST): Representable morphisms of categories fibred in groupoids—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-10-03.
  21. ^ "Section 94.3 (06TI): Presheaves—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-10-01.
  22. ^ "Section 94.6 (06TU): The structure sheaf—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-10-01.
  23. ^ "Section 94.8 (076N): Representable categories—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-10-01.
  24. ^ "Lemma 94.13.2 (076S)—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-10-01.
  25. ^ "Section 76.12 (0440): Quasi-coherent sheaves on groupoids—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-10-01.

External links edit

Artin's Axioms edit

Papers edit

Applications edit

Other edit