Giqa/sandbox
Names
IUPAC name
N'-[2-[2-(2-aminoethylamino)ethylamino]ethyl]ethane-1,2-diamine
Other names
N-(2-Aminoethyl)-N'-{2-[(2-aminoethyl)amino]ethyl}-1,2-ethanediamine
Identifiers
ChemSpider
UNII
Properties
C8H23N5, linear form
Molar mass 189.30
Appearance Colorless to light yellow liquid
Density 0.998 g/mL
Melting point −40 °C
Boiling point 340 °C
6.54E+06 mg/L
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Acute toxicity (dermal, oral), Sensitization (skin, respiratory), Toxic to aquatic life
GHS labelling:
class="wikitable collapsible" style="min-width: 50em;"
GHS hazard pictograms[1]
Pictogram Code Symbol description Image link
GHS01: Explosive GHS01 {{GHS exploding bomb}} Image:GHS-pictogram-explos.svg Explosive
GHS02: Flammable GHS02 {{GHS flame}} Image:GHS-pictogram-flamme.svg
GHS03: Oxidizing GHS03 {{GHS flame over circle}} Image:GHS-pictogram-rondflam.svg
GHS04: Compressed Gas GHS04 {{GHS gas cylinder}} Image:GHS-pictogram-bottle.svg
GHS05: Corrosive GHS05 {{GHS corrosion}} Image:GHS-pictogram-acid.svg Corrosive
GHS06: Toxic GHS06 {{GHS skull and crossbones}} Image:GHS-pictogram-skull.svg Accute Toxic
GHS07: Exclamation mark GHS07 {{GHS exclamation mark}} Image:GHS-pictogram-exclam.svg Irritant
GHS08: Health hazard GHS08 {{GHS health hazard}} Image:GHS-pictogram-silhouette.svg Health Hazard
GHS09: Environmental hazard GHS09 {{GHS environment}} Image:GHS-pictogram-pollu.svg Environment

See also

GHS hazard pictograms[1]
Pictogram Code Symbol description Image link
GHS01: Explosive GHS01 {{GHS exploding bomb}} Image:GHS-pictogram-explos.svg Explosive
GHS02: Flammable GHS02 {{GHS flame}} Image:GHS-pictogram-flamme.svg
GHS03: Oxidizing GHS03 {{GHS flame over circle}} Image:GHS-pictogram-rondflam.svg
GHS04: Compressed Gas GHS04 {{GHS gas cylinder}} Image:GHS-pictogram-bottle.svg
GHS05: Corrosive GHS05 {{GHS corrosion}} Image:GHS-pictogram-acid.svg Corrosive
GHS06: Toxic GHS06 {{GHS skull and crossbones}} Image:GHS-pictogram-skull.svg Accute Toxic
GHS07: Exclamation mark GHS07 {{GHS exclamation mark}} Image:GHS-pictogram-exclam.svg Irritant
GHS08: Health hazard GHS08 {{GHS health hazard}} Image:GHS-pictogram-silhouette.svg Health Hazard
GHS09: Environmental hazard GHS09 {{GHS environment}} Image:GHS-pictogram-pollu.svg Environment

See also

GHS hazard pictograms[1]
Pictogram Code Symbol description Image link
GHS01: Explosive GHS01 {{GHS exploding bomb}} Image:GHS-pictogram-explos.svg Explosive
GHS02: Flammable GHS02 {{GHS flame}} Image:GHS-pictogram-flamme.svg
GHS03: Oxidizing GHS03 {{GHS flame over circle}} Image:GHS-pictogram-rondflam.svg
GHS04: Compressed Gas GHS04 {{GHS gas cylinder}} Image:GHS-pictogram-bottle.svg
GHS05: Corrosive GHS05 {{GHS corrosion}} Image:GHS-pictogram-acid.svg Corrosive
GHS06: Toxic GHS06 {{GHS skull and crossbones}} Image:GHS-pictogram-skull.svg Accute Toxic
GHS07: Exclamation mark GHS07 {{GHS exclamation mark}} Image:GHS-pictogram-exclam.svg Irritant
GHS08: Health hazard GHS08 {{GHS health hazard}} Image:GHS-pictogram-silhouette.svg Health Hazard
GHS09: Environmental hazard GHS09 {{GHS environment}} Image:GHS-pictogram-pollu.svg Environment

See also

|-


|- style="background:#f1f1f1;"

| style="padding-left:1em;" |

| H302, H312, H314, H317, H411[2]

|-

|- style="background:#f1f1f1;"

| style="padding-left:1em;" |

| P273, P280, P305+P351+P338, P310[2]

|-

| Flash point | 163 °C

|-

|

| 321 °C

|-





| colspan=2 style="text-align:left; background:#f8eaba; border:1px solid #a2a9b1;" |

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

|-

|}

Tracking categories (test):

Tetraethylenepentamine, abbreviated TEPA, is a viscous liquid formed by a mixture of linear, branched and cyclic pentamines (also referred to as ‘congeners’). TEPA has a pale yellow colour and an ammonia-like odor. It is readily soluble in both water and organic solvents. TEPA is a chemical building block mainly used in the manufacture of epoxy curing agents, lubricating oils, fuels, and polyamide resins. Additional applications include asphalt additives, corrosion inhibitors, paper additives, hydrocarbon recovery and purification, mineral processing aids, surfactants, and textile adhesives. [3]

CO2 capture edit

Due to the high amine-content and the well-known reaction of these groups with CO2,[4][5] TEPA has been applied to carbon capture, mainly via its immobilization in porous adsorbents.

Cyclability edit

When adsorbed on porous materials, TEPA usually show some leaching or amine loss,[6][7] although not as much as observed with lower molecular weight compounds such as ethylenediamine,[8][9] hexamethylenediamine, piperazine and hexamethyleneimine.[9] This is probably the reason why tetraethylenepentamine is much less studied than polyethyleneimine (PEI) for CO2 capture.


Direct Air Capture (DAC) edit

[10]

See also edit

References edit

  1. ^ a b c "Globally Harmonized System of Classification and Labelling of Chemicals" (pdf). 2021. Annex 3: Codification of Statements and Pictograms (pp 268–385).
  2. ^ a b c Sigma-Aldrich Co., Tetraethylenepentamine. Retrieved on 11 July 2017.
  3. ^ "Ethyleneamines. Form No. 108-01347-801 AMS" (September 4, 2014 ed.). The Dow Chemical Company. Retrieved July 11, 2017. {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: postscript (link)
  4. ^ Caplow, M. (1968). "Kinetics of Carbamate Formation and Breakdown". J. Am. Chem. Soc. 90 (24): 6795−6803. doi:10.1021/ja01026a041.
  5. ^ Danckwerts, P. V. (1979). "The Reaction of CO2 with Ethanolamines". Chem. Eng. Sci. 34 (4): 443−446. doi:10.1016/0009-2509(79)85087-3.
  6. ^ Tanthana, J.; Chuang, S. S. C. (2010). "In Situ Infrared Study of the Role of PEG in Stabilizing Silica-Supported Amines for CO2 Capture". ChemSusChem. 3 (8): 957–64. doi:10.1002/cssc.201000090.
  7. ^ Sanz-Pérez, E. S.; Olivares-Marín, M.; Arencibia, A.; Sanz, R.; Calleja, G.; Maroto-Valer, M. M. (2013). "CO2 adsorption performance of amino-functionalized SBA-15 under post-combustion conditions". Int. J. Greenhouse Gas Control. 17: 366–375. doi:10.1016/j.ijggc.2013.05.011.
  8. ^ Goeppert, A.; Prakash, G. K. S.; Olah, G. A. (2010). "Nanostructured Silica as a Support for Regenerable High-Capacity Organoamine-Based CO2 Sorbents". Energy Environ. Sci. 3 (2): 1949−1960. doi:10.1039/c0ee00136h.
  9. ^ a b Sanz-Pérez, E. S.; Arencibia, A.; Sanz, R.; Calleja, G. (2016). "New developments on carbon dioxide capture using amine-impregnated silicas". Adsorption. 22 (4): 366–375. doi:10.1007/s10450-015-9740-2.
  10. ^ Sanz-Pérez, E. S.; Murdock, C. R.; Didas, S. A.; Jones, C. W. (2016). "Direct Capture of CO2 from Ambient Air". Chem. Rev. 116 (19): 11840−11876. doi:10.1021/acs.chemrev.6b00173.