Table of Clebsch–Gordan coefficients

This is a table of Clebsch–Gordan coefficients used for adding angular momentum values in quantum mechanics. The overall sign of the coefficients for each set of constant , , is arbitrary to some degree and has been fixed according to the Condon–Shortley and Wigner sign convention as discussed by Baird and Biedenharn.[1] Tables with the same sign convention may be found in the Particle Data Group's Review of Particle Properties[2] and in online tables.[3]

Formulation edit

The Clebsch–Gordan coefficients are the solutions to

 

Explicitly:

 

The summation is extended over all integer k for which the argument of every factorial is nonnegative.[4]

For brevity, solutions with M < 0 and j1 < j2 are omitted. They may be calculated using the simple relations

 

and

 

Specific values edit

The Clebsch–Gordan coefficients for j values less than or equal to 5/2 are given below.[5]

 j2 = 0 edit

When j2 = 0, the Clebsch–Gordan coefficients are given by  .

 j1 = 1/2j2 = 1/2 edit

m = 1
j
m1m2
1
1/21/2  
m = −1
j
m1m2
1
1/2, −1/2  
m = 0
j
m1m2
1 0
1/2, −1/2    
1/21/2    

 j1 = 1,  j2 = 1/2 edit

m = 3/2
j
m1m2
3/2
1, 1/2  
m = 1/2
j
m1m2
3/2 1/2
1, −1/2    
0, 1/2    

 j1 = 1,  j2 = 1 edit

m = 2
j
m1m2
2
1, 1  
m = 1
j
m1m2
2 1
1, 0    
0, 1    
m = 0
j
m1m2
2 1 0
1, −1      
0, 0      
−1, 1      

 j1 = 3/2j2 = 1/2 edit

m = 2
j
m1m2
2
3/21/2  
m = 1
j
m1m2
2 1
3/2, −1/2    
1/21/2    
m = 0
j
m1m2
2 1
1/2, −1/2    
1/21/2    

 j1 = 3/2j2 = 1 edit

m = 5/2
j
m1m2
5/2
3/2, 1  
m = 3/2
j
m1m2
5/2 3/2
3/2, 0    
1/2, 1    
m = 1/2
j
m1m2
5/2 3/2 1/2
3/2, −1      
1/2, 0      
1/2, 1      

 j1 = 3/2j2 = 3/2 edit

m = 3
j
m1m2
3
3/23/2  
m = 2
j
m1m2
3 2
3/21/2    
1/23/2    
m = 1
j
m1m2
3 2 1
3/2, −1/2      
1/21/2      
1/23/2      
m = 0
j
m1m2
3 2 1 0
3/2, −3/2        
1/2, −1/2        
1/21/2        
3/23/2        

 j1 = 2,  j2 = 1/2 edit

m = 5/2
j
m1m2
5/2
2, 1/2  
m = 3/2
j
m1m2
5/2 3/2
2, −1/2    
1, 1/2    
m = 1/2
j
m1m2
5/2 3/2
1, −1/2    
0, 1/2    

 j1 = 2,  j2 = 1 edit

m = 3
j
m1m2
3
2, 1  
m = 2
j
m1m2
3 2
2, 0    
1, 1    
m = 1
j
m1m2
3 2 1
2, −1      
1, 0      
0, 1      
m = 0
j
m1m2
3 2 1
1, −1      
0, 0      
−1, 1      

 j1 = 2,  j2 = 3/2 edit

m = 7/2
j
m1m2
7/2
2, 3/2  
m = 5/2
j
m1m2
7/2 5/2
2, 1/2    
1, 3/2    
m = 3/2
j
m1m2
7/2 5/2 3/2
2, −1/2      
1, 1/2      
0, 3/2      
m = 1/2
j
m1m2
7/2 5/2 3/2 1/2
2, −3/2        
1, −1/2        
0, 1/2        
−1, 3/2        

 j1 = 2,  j2 = 2 edit

m = 4
j
m1m2
4
2, 2  
m = 3
j
m1m2
4 3
2, 1    
1, 2    
m = 2
j
m1m2
4 3 2
2, 0      
1, 1      
0, 2      
m = 1
j
m1m2
4 3 2 1
2, −1        
1, 0        
0, 1        
−1, 2        
m = 0
j
m1m2
4 3 2 1 0
2, −2          
1, −1          
0, 0          
−1, 1          
−2, 2          

 j1 = 5/2j2 = 1/2 edit

m = 3
j
m1m2
3
5/21/2  
m = 2
j
m1m2
3 2
5/2, −1/2    
3/21/2    
m = 1
j
m1m2
3 2
3/2, −1/2    
1/21/2    
m = 0
j
m1m2
3 2
1/2, −1/2    
1/21/2    

 j1 = 5/2j2 = 1 edit

m = 7/2
j
m1m2
7/2
5/2, 1  
m = 5/2
j
m1m2
7/2 5/2
5/2, 0    
3/2, 1    
m = 3/2
j
m1m2
7/2 5/2 3/2
5/2, −1      
3/2, 0      
1/2, 1      
m = 1/2
j
m1m2
7/2 5/2 3/2
3/2, −1      
1/2, 0      
1/2, 1      

 j1 = 5/2j2 = 3/2 edit

m = 4
j
m1m2
4
5/23/2  
m = 3
j
m1m2
4 3
5/21/2    
3/23/2    
m = 2
j
m1m2
4 3 2
5/2, −1/2      
3/21/2      
1/23/2      
m = 1
j
m1m2
4 3 2 1
5/2, −3/2        
3/2, −1/2        
1/21/2        
1/23/2        
m = 0
j
m1m2
4 3 2 1
3/2, −3/2        
1/2, −1/2        
1/21/2        
3/23/2        

 j1 = 5/2j2 = 2 edit

m = 9/2
j
m1m2
9/2
5/2, 2  
m = 7/2
j
m1m2
9/2 7/2
5/2, 1    
3/2, 2    
m = 5/2
j
m1m2
9/2 7/2 5/2
5/2, 0      
3/2, 1      
1/2, 2      
m = 3/2
j
m1m2
9/2 7/2 5/2 3/2
5/2, −1        
3/2, 0        
1/2, 1        
1/2, 2        
m = 1/2
j
m1m2
9/2 7/2 5/2 3/2 1/2
5/2, −2          
3/2, −1          
1/2, 0          
1/2, 1          
3/2, 2          

 j1 = 5/2j2 = 5/2 edit

m = 5
j
m1m2
5
5/25/2  
m = 4
j
m1m2
5 4
5/23/2    
3/25/2    
m = 3
j
m1m2
5 4 3
5/21/2      
3/23/2      
1/25/2      
m = 2
j
m1m2
5 4 3 2
5/2, −1/2        
3/21/2        
1/23/2        
1/25/2        
m = 1
j
m1m2
5 4 3 2 1
5/2, −3/2          
3/2, −1/2          
1/21/2          
1/23/2          
3/25/2          
m = 0
j
m1m2
5 4 3 2 1 0
5/2, −5/2            
3/2, −3/2            
1/2, −1/2            
1/21/2            
3/23/2            
5/25/2            

SU(N) Clebsch–Gordan coefficients edit

Algorithms to produce Clebsch–Gordan coefficients for higher values of   and  , or for the su(N) algebra instead of su(2), are known.[6] A web interface for tabulating SU(N) Clebsch–Gordan coefficients is readily available.

References edit

  1. ^ Baird, C.E.; L. C. Biedenharn (October 1964). "On the Representations of the Semisimple Lie Groups. III. The Explicit Conjugation Operation for SUn". J. Math. Phys. 5 (12): 1723–1730. Bibcode:1964JMP.....5.1723B. doi:10.1063/1.1704095.
  2. ^ Hagiwara, K.; et al. (July 2002). "Review of Particle Properties" (PDF). Phys. Rev. D. 66 (1): 010001. Bibcode:2002PhRvD..66a0001H. doi:10.1103/PhysRevD.66.010001. Retrieved 2007-12-20.
  3. ^ Mathar, Richard J. (2006-08-14). "SO(3) Clebsch Gordan coefficients" (text). Retrieved 2012-10-15.
  4. ^ (2.41), p. 172, Quantum Mechanics: Foundations and Applications, Arno Bohm, M. Loewe, New York: Springer-Verlag, 3rd ed., 1993, ISBN 0-387-95330-2.
  5. ^ Weissbluth, Mitchel (1978). Atoms and molecules. ACADEMIC PRESS. p. 28. ISBN 0-12-744450-5. Table 1.4 resumes the most common.
  6. ^ Alex, A.; M. Kalus; A. Huckleberry; J. von Delft (February 2011). "A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch–Gordan coefficients". J. Math. Phys. 82: 023507. arXiv:1009.0437. Bibcode:2011JMP....52b3507A. doi:10.1063/1.3521562.

External links edit