Monster group

In the mathematical field of group theory, the monster group M or F1 (also known as the Fischer–Griess monster, or the Friendly Giant) is a group of finite order:

 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 = 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 ≈ 8 · 1053.

It is a simple group, meaning it does not have any proper non-trivial normal subgroups (that is, the only non-trivial normal subgroup is M itself).

The finite simple groups have been completely classified (see the Classification of finite simple groups). The list of finite simple groups consists of 18 countably infinite families, plus 26 sporadic groups that do not follow such a systematic pattern. The monster group is the largest of these sporadic groups and contains all but six of the other sporadic groups as subquotients. Robert Griess has called these six exceptions pariahs, and refers to the others as the happy family.

Existence and uniqueness

The monster was predicted by Bernd Fischer (unpublished) and Robert Griess (1976) in about 1973 as a simple group containing a double cover of Fischer's baby monster group as a centralizer of an involution. Within a few months the order of M was found by Griess using the Thompson order formula, and Fischer, Conway, Norton and Thompson discovered other groups as subquotients, including many of the known sporadic groups, and two new ones: the Thompson group and the Harada–Norton group. Griess (1982) constructed M as the automorphism group of the Griess algebra, a 196884-dimensional commutative nonassociative algebra. John Conway (1985) and Jacques Tits (1984, 1985) subsequently simplified this construction.

Griess's construction showed that the monster existed. Thompson (1979) showed that its uniqueness (as a simple group satisfying certain conditions coming from the classification of finite simple groups) would follow from the existence of a 196883-dimensional faithful representation. A proof of the existence of such a representation was announced by Norton (1985), though he has never published the details. Griess, Meierfrankenfeld & Segev (1989) gave the first complete published proof of the uniqueness of the monster (more precisely, they showed that a group with the same centralizers of involutions as the monster is isomorphic to the monster).

↑Jump back a section

Representations

The minimal degree of a faithful complex representation is 196883, which is the product of the 3 largest prime divisors of the order of M. The character table of the monster, a 194-by-194 array, was calculated in 1979 by Fischer and Donald Livingstone using computer programs written by Michael Thorne. The smallest linear representation over any field has dimension 196882 over the field with 2 elements, only 1 less than the dimension of the smallest complex representation.

The smallest faithful permutation representation of the monster is on 24 · 37 · 53 · 74 · 11 · 132 · 29 · 41 · 59 · 71 (about 1020) points.

The monster can be realized as a Galois group over the rational numbers (Thompson 1984, p. 443), and as a Hurwitz group (Wilson 2004).

The monster is unusual among simple groups in that there is no known easy way to represent its elements. This is not due so much to its size as to the absence of "small" representations. For example, the simple groups A100 and SL20(2) are far larger, but easy to calculate with as they have "small" permutation or linear representations. The alternating groups have permutation representations that are "small" compared to the size of the group, and all finite simple groups of Lie type have linear representations that are "small" compared to the size of the group. All sporadic groups other than the monster also have linear representations small enough that they are easy to work with on a computer (the next hardest case after the monster is the baby monster, with a representation of dimension 4370).

A computer construction

Robert A. Wilson has found explicitly (with the aid of a computer) two 196882 by 196882 matrices (with elements in the field of order 2) which together generate the monster group; this is one dimension lower than the 196883-dimensional representation in characteristic 0. Performing calculations with these matrices is possible but is too expensive in terms of time and storage space to be useful. Wilson with collaborators has found a method of performing calculations with the monster that is considerably faster.

Let V be a 196882 dimensional vector space over the field with 2 elements. A large subgroup H (preferably a maximal subgroup) of the monster is selected in which it is easy to perform calculations. The subgroup H chosen is 31+12.2.Suz.2, where Suz is the Suzuki group. Elements of the monster are stored as words in the elements of H and an extra generator T. It is reasonably quick to calculate the action of one of these words on a vector in V. Using this action, it is possible to perform calculations (such as the order of an element of the monster). Wilson has exhibited vectors u and v whose joint stabilizer is the trivial group. Thus (for example) one can calculate the order of an element g of the monster by finding the smallest i > 0 such that giu = u and giv = v.

This and similar constructions (in different characteristics) have been used to find some of its non-local maximal subgroups.

↑Jump back a section

Moonshine

The monster group is one of two principal constituents in the Monstrous moonshine conjecture by Conway and Norton, which relates discrete and non-discrete mathematics and was finally proved by Richard Borcherds in 1992.

In this setting, the monster group is visible as the automorphism group of the monster module, a vertex operator algebra, an infinite dimensional algebra containing the Griess algebra, and acts on the monster Lie algebra, a generalized Kac–Moody algebra.

↑Jump back a section

McKay's E8 observation

There are also connections between the monster and the extended Dynkin diagrams $\tilde E_8,$ specifically between the nodes of the diagram and certain conjugacy classes in the monster, known as McKay's E8 observation.[1][2] This is then extended to a relation between the extended diagrams $\tilde E_6, \tilde E_7, \tilde E_8$ and the groups 3.Fi24', 2.B, and M, where these are (3/2/1-fold central extensions) of the Fischer group, baby monster group, and monster. These are the sporadic groups associated with centralizers of elements of type 1A, 2A, and 3A in the monster, and the order of the extension corresponds to the symmetries of the diagram. See ADE classification: trinities for further connections (of McKay correspondence type), including (for the monster) with the rather small simple group PSL(2,11) and with the 120 tritangent planes of a canonic sextic curve of genus 4.

↑Jump back a section

Subgroup structure

Sporadic Finite Groups Showing (Sporadic) Subgroups. The diagram incorrectly omits a line from M11 to O'Nan.

The monster has at least 44 conjugacy classes of maximal subgroups. Non-abelian simple groups of some 60 isomorphism types are found as subgroups or as quotients of subgroups. The largest alternating group represented is A12. The monster contains 20 of the 26 sporadic groups as subquotients. This diagram, based on one in the book Symmetry and the monster by Mark Ronan, shows how they fit together. The lines signify inclusion, as a subquotient, of the lower group by the upper one. The circled symbols denote groups not involved in larger sporadic groups. For the sake of clarity redundant inclusions are not shown.

44 of the classes of maximal subgroups of the monster are given by the following list, which is (as of 2012) believed to be complete except possibly for subgroups normalizing simple subgroups of the form L2(13), U3(4), U3(8), and Suz(8) (Wilson 2010), (Norton & Wilson 2012). However tables of maximal subgroups have often been found to contain subtle errors, and in particular at least two of the subgroups on the list below were incorrectly omitted in some previous lists.

2.B Centralizer of an involution

21+24.Co1 Centralizer of an involution

3.Fi24 Normalizer of a subgroup of order 3.

22.2E6(22):S3 Normalizer of a 4-group

210+16.O10+(2)

22+11+22.(M24 × S3)

31+12.2Suz.2 Normalizer of a subgroup of order 3.

25+10+20.(S3 × L5(2))

S3 × Th Normalizer of a subgroup of order 3.

23+6+12+18.(L3(2) × 3S6)

38.O8(3).23

(D10 × HN).2 Normalizer of a subgroup of order 5.

(32:2 × O8+(3)).S4

32+5+10.(M11 × 2S4)

33+2+6+6:(L3(3) × SD16)

51+6:2J2:4 Normalizer of a subgroup of order 5.

(7:3 × He):2 Normalizer of a subgroup of order 7.

(A5 × A12):2

53+3.(2 × L3(5))

(A6 × A6 × A6).(2 × S4)

(A5 × U3(8):31):2

52+2+4:(S3 × GL2(5))

(L3(2) × S4(4):2).2

71+4:(3 × 2S7) Normalizer of a subgroup of order 7.

(52:[24] × U3(5)).S3

(L2(11) × M12):2 Contains the normalizer (11.5 × M12):2 of a subgroup of order 11.

(A7 × (A5 × A5):22):2

54:(3 × 2L2(25)):22

72+1+2:GL2(7)

M11 × A6.22

(S5 × S5 × S5):S3

(L2(11) × L2(11)):4

132:2L2(13).4

(72:(3 × 2A4) × L2(7)).2

(13:6 × L3(3)).2 Normalizer of a subgroup of order 13.

131+2:(3 × 4S4) Normalizer of a subgroup of order 13.

L2(71) (Holmes & Wilson 2008)

L2(59) (Holmes & Wilson 2004)

112:(5 × 2A5)

L2(41) Norton & Wilson (2012) found a maximal subgroup of this form; due to a subtle error, some previous lists and papers stated that no such maximal subgroup existed.

L2(29):2 (Holmes & Wilson 2002)

72:SL2(7) This was accidentally omitted on some previous lists of 7-local subgroups.

L2(19):2 (Holmes & Wilson 2008)

41:40 Normalizer of a subgroup of order 41.

↑Jump back a section

Notes

1. ^ Arithmetic groups and the affine E8 Dynkin diagram, by John F. Duncan, in Groups and symmetries: from Neolithic Scots to John McKay
2. ^ le Bruyn, Lieven (22 April 2009), the monster graph and McKay's observation
↑Jump back a section

References

↑Jump back a section