Mediator of RNA polymerase II transcription subunit 15, also known as Gal11, Spt13 in yeast and PCQAP, ARC105, or TIG-1 in humans is a protein encoded by the MED15 gene.[5]

MED15
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesMED15, ARC105, CAG7A, CTG7A, PCQAP, TIG-1, TIG1, TNRC7, mediator complex subunit 15
External IDsOMIM: 607372 MGI: 2137379 GeneCards: MED15
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001040683
NM_001285884
NM_001285886
NM_033609
NM_001358404

RefSeq (protein)

NP_001035773
NP_001272813
NP_001272815
NP_001345333
NP_291087

Location (UCSC)Chr 22: 20.5 – 20.59 MbChr 16: 17.47 – 17.55 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function edit

MED15 is a general transcriptional cofactor of the mediator complex involved in RNA polymerase II dependent transcription, originally called Gal11 and Spt13 and found in yeast as an essential factor for Gal4 dependent transactivation by T.Fukasawa and F.Winston labs. Transcription factors Gcn4, Pho4, Msn2, Ino2, members of the Gal4 family - Gal4, Oaf1, Pdr1, and viral VP16 have been reported to interact with yeast MED15.[6]

Most of these transcription factors share the same transactivation domain, 9aaTAD, which directly interacts with KIX domain of the MED15.[7]

Furthermore, human MED15 cooperates in mediator complex (previously known as PC2, ARC, or DRIP) with transcription factors like VP16 and SREBP. Human SREBP regulates sterol responsive gene expression, and this regulatory action is conserved in the genetic model organism C. elegans, a roundworm (homologues MDT-15 and SBP-1). Also in C. elegans, MDT-15 is essential for the response to several stresses (fasting, heavy metal, toxin, and oxidative stress); at least in part the fasting response is conferred by interactions of MDT-15 with nuclear receptors, including NHR-49.[5]

Gene edit

The MED15 gene contains stretches of trinucleotide repeats and is located in the chromosome 22 region which is deleted in DiGeorge's syndrome. Two transcript variants encoding different isoforms have been found for this gene.[5]

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000099917Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000012114Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b c "Entrez Gene: PCQAP PC2 (positive cofactor 2, multiprotein complex) glutamine/Q-rich-associated protein".
  6. ^ Suzuki Y, Nogi Y, Abe A, Fukasawa T (Nov 1988). "GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae". Molecular and Cellular Biology. 8 (11): 4991–9. doi:10.1128/mcb.8.11.4991. PMC 365593. PMID 3062377.; Fassler JS, Winston F (Dec 1989). "The Saccharomyces cerevisiae SPT13/GAL11 gene has both positive and negative regulatory roles in transcription". Molecular and Cellular Biology. 9 (12): 5602–9. doi:10.1128/mcb.9.12.5602. PMC 363730. PMID 2685570.; Swanson MJ, Qiu H, Sumibcay L, Krueger A, Kim SJ, Natarajan K, Yoon S, Hinnebusch AG (Apr 2003). "A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo". Molecular and Cellular Biology. 23 (8): 2800–20. doi:10.1128/MCB.23.8.2800-2820.2003. PMC 152555. PMID 12665580.; Bryant GO, Ptashne M (May 2003). "Independent recruitment in vivo by Gal4 of two complexes required for transcription". Molecular Cell. 11 (5): 1301–9. doi:10.1016/S1097-2765(03)00144-8. PMID 12769853.; Jedidi I, Zhang F, Qiu H, Stahl SJ, Palmer I, Kaufman JD, Nadaud PS, Mukherjee S, Wingfield PT, Jaroniec CP, Hinnebusch AG (Jan 2010). "Activator Gcn4 employs multiple segments of Med15/Gal11, including the KIX domain, to recruit mediator to target genes in vivo". The Journal of Biological Chemistry. 285 (4): 2438–55. doi:10.1074/jbc.M109.071589. PMC 2807301. PMID 19940160.; Thakur JK, Arthanari H, Yang F, Chau KH, Wagner G, Näär AM (Feb 2009). "Mediator subunit Gal11p/MED15 is required for fatty acid-dependent gene activation by yeast transcription factor Oaf1p". The Journal of Biological Chemistry. 284 (7): 4422–8. doi:10.1074/jbc.M808263200. PMC 3837390. PMID 19056732.
  7. ^ Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M (Jun 2007). "Nine-amino-acid transactivation domain: establishment and prediction utilities". Genomics. 89 (6): 756–68. doi:10.1016/j.ygeno.2007.02.003. PMID 17467953.; Piskacek M (November 2009). "Common Transactivation Motif 9aaTAD recruits multiple general co-activators TAF9, MED15, CBP and p300". Nature Precedings. doi:10.1038/npre.2009.3488.2.; Thakur JK, Arthanari H, Yang F, Chau KH, Wagner G, Näär AM (Feb 2009). "Mediator subunit Gal11p/MED15 is required for fatty acid-dependent gene activation by yeast transcription factor Oaf1p". The Journal of Biological Chemistry. 284 (7): 4422–8. doi:10.1074/jbc.M808263200. PMC 3837390. PMID 19056732.; Piskacek M (November 2009). "9aaTAD Prediction result (2006)". Nature Precedings. doi:10.1038/npre.2009.3984.1.; Piskacek M (November 2009). "Common Transactivation Motif 9aaTAD recruits multiple general co-activators TAF9, MED15, CBP and p300". Nature Precedings. doi:10.1038/npre.2009.3488.2.; Piskacek M (November 2009). "9aaTADs mimic DNA to interact with a pseudo-DNA Binding Domain KIX of Med15 (Molecular Chameleons)". Nature Precedings. doi:10.1038/npre.2009.3939.1.

Further reading edit