In mathematics, particularly topology, a topological space X is locally normal if intuitively it looks locally like a normal space.[1] More precisely, a locally normal space satisfies the property that each point of the space belongs to a neighbourhood of the space that is normal under the subspace topology.

Separation axioms
in topological spaces
Kolmogorov classification
T0 (Kolmogorov)
T1 (Fréchet)
T2 (Hausdorff)
T2½(Urysohn)
completely T2 (completely Hausdorff)
T3 (regular Hausdorff)
T(Tychonoff)
T4 (normal Hausdorff)
T5 (completely normal
 Hausdorff)
T6 (perfectly normal
 Hausdorff)

Formal definition edit

A topological space X is said to be locally normal if and only if each point, x, of X has a neighbourhood that is normal under the subspace topology.[2]

Note that not every neighbourhood of x has to be normal, but at least one neighbourhood of x has to be normal (under the subspace topology).

Note however, that if a space were called locally normal if and only if each point of the space belonged to a subset of the space that was normal under the subspace topology, then every topological space would be locally normal. This is because, the singleton {x} is vacuously normal and contains x. Therefore, the definition is more restrictive.

Examples and properties edit

See also edit

Further reading edit

Čech, Eduard (1937). "On Bicompact Spaces". Annals of Mathematics. 38 (4): 823–844. doi:10.2307/1968839. ISSN 0003-486X. JSTOR 1968839.

References edit

  1. ^ Bella, A.; Carlson, N. (2018-01-02). "On cardinality bounds involving the weak Lindelöf degree". Quaestiones Mathematicae. 41 (1): 99–113. doi:10.2989/16073606.2017.1373157. ISSN 1607-3606. S2CID 119732758.
  2. ^ Hansell, R. W.; Jayne, J. E.; Rogers, C. A. (June 1985). "Separation of K –analytic sets". Mathematika. 32 (1): 147–190. doi:10.1112/S0025579300010962. ISSN 0025-5793.