Kirchhoff–Love plate theory

The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love[1] using assumptions proposed by Kirchhoff. The theory assumes that a mid-surface plane can be used to represent a three-dimensional plate in two-dimensional form.

Deformation of a thin plate highlighting the displacement, the mid-surface (red) and the normal to the mid-surface (blue)

The following kinematic assumptions that are made in this theory:[2]

  • straight lines normal to the mid-surface remain straight after deformation
  • straight lines normal to the mid-surface remain normal to the mid-surface after deformation
  • the thickness of the plate does not change during a deformation.

Assumed displacement field edit

Let the position vector of a point in the undeformed plate be  . Then

 

The vectors   form a Cartesian basis with origin on the mid-surface of the plate,   and   are the Cartesian coordinates on the mid-surface of the undeformed plate, and   is the coordinate for the thickness direction.

Let the displacement of a point in the plate be  . Then

 

This displacement can be decomposed into a vector sum of the mid-surface displacement   and an out-of-plane displacement   in the   direction. We can write the in-plane displacement of the mid-surface as

 

Note that the index   takes the values 1 and 2 but not 3.

Then the Kirchhoff hypothesis implies that

 

If   are the angles of rotation of the normal to the mid-surface, then in the Kirchhoff-Love theory

 

Note that we can think of the expression for   as the first order Taylor series expansion of the displacement around the mid-surface.

 
Displacement of the mid-surface (left) and of a normal (right)

Quasistatic Kirchhoff-Love plates edit

The original theory developed by Love was valid for infinitesimal strains and rotations. The theory was extended by von Kármán to situations where moderate rotations could be expected.

Strain-displacement relations edit

For the situation where the strains in the plate are infinitesimal and the rotations of the mid-surface normals are less than 10° the strain-displacement relations are

 

where   as  .

Using the kinematic assumptions we have

 

Therefore, the only non-zero strains are in the in-plane directions.

Equilibrium equations edit

The equilibrium equations for the plate can be derived from the principle of virtual work. For a thin plate under a quasistatic transverse load   pointing towards positive   direction, these equations are

 

where the thickness of the plate is  . In index notation,

 

where   are the stresses.

 
Bending moments and normal stresses
 
Torques and shear stresses

Boundary conditions edit

The boundary conditions that are needed to solve the equilibrium equations of plate theory can be obtained from the boundary terms in the principle of virtual work. In the absence of external forces on the boundary, the boundary conditions are

 

Note that the quantity   is an effective shear force.

Constitutive relations edit

The stress-strain relations for a linear elastic Kirchhoff plate are given by

 

Since   and   do not appear in the equilibrium equations it is implicitly assumed that these quantities do not have any effect on the momentum balance and are neglected. The remaining stress-strain relations, in matrix form, can be written as

 

Then,

 

and

 

The extensional stiffnesses are the quantities

 

The bending stiffnesses (also called flexural rigidity) are the quantities

 

The Kirchhoff-Love constitutive assumptions lead to zero shear forces. As a result, the equilibrium equations for the plate have to be used to determine the shear forces in thin Kirchhoff-Love plates. For isotropic plates, these equations lead to

 

Alternatively, these shear forces can be expressed as

 

where

 

Small strains and moderate rotations edit

If the rotations of the normals to the mid-surface are in the range of 10  to 15 , the strain-displacement relations can be approximated as

 

Then the kinematic assumptions of Kirchhoff-Love theory lead to the classical plate theory with von Kármán strains

 

This theory is nonlinear because of the quadratic terms in the strain-displacement relations.

If the strain-displacement relations take the von Karman form, the equilibrium equations can be expressed as

 

Isotropic quasistatic Kirchhoff-Love plates edit

For an isotropic and homogeneous plate, the stress-strain relations are

 

where   is Poisson's Ratio and   is Young's Modulus. The moments corresponding to these stresses are

 

In expanded form,

 

where   for plates of thickness  . Using the stress-strain relations for the plates, we can show that the stresses and moments are related by

 

At the top of the plate where  , the stresses are

 

Pure bending edit

For an isotropic and homogeneous plate under pure bending, the governing equations reduce to

 

Here we have assumed that the in-plane displacements do not vary with   and  . In index notation,

 

and in direct notation

 

which is known as the biharmonic equation. The bending moments are given by

 

Bending under transverse load edit

If a distributed transverse load   pointing along positive   direction is applied to the plate, the governing equation is  . Following the procedure shown in the previous section we get[3]

 

In rectangular Cartesian coordinates, the governing equation is

 

and in cylindrical coordinates it takes the form

 

Solutions of this equation for various geometries and boundary conditions can be found in the article on bending of plates.

Cylindrical bending edit

Under certain loading conditions a flat plate can be bent into the shape of the surface of a cylinder. This type of bending is called cylindrical bending and represents the special situation where  . In that case

 

and

 

and the governing equations become[3]

 

Dynamics of Kirchhoff-Love plates edit

The dynamic theory of thin plates determines the propagation of waves in the plates, and the study of standing waves and vibration modes.

Governing equations edit

The governing equations for the dynamics of a Kirchhoff-Love plate are

 

where, for a plate with density  ,

 

and

 

Solutions of these equations for some special cases can be found in the article on vibrations of plates. The figures below show some vibrational modes of a circular plate.

Isotropic plates edit

The governing equations simplify considerably for isotropic and homogeneous plates for which the in-plane deformations can be neglected. In that case we are left with one equation of the following form (in rectangular Cartesian coordinates):

 

where   is the bending stiffness of the plate. For a uniform plate of thickness  ,

 

In direct notation

 

For free vibrations, the governing equation becomes

 

References edit

  1. ^ A. E. H. Love, On the small free vibrations and deformations of elastic shells, Philosophical trans. of the Royal Society (London), 1888, Vol. série A, N° 17 p. 491–549.
  2. ^ Reddy, J. N., 2007, Theory and analysis of elastic plates and shells, CRC Press, Taylor and Francis.
  3. ^ a b Timoshenko, S. and Woinowsky-Krieger, S., (1959), Theory of plates and shells, McGraw-Hill New York.

See also edit