Draft:Fast-spiking Parvalbumin Positive GABAergic Interneurons

Fast-spiking Parvalbumin Positive GABAergic Interneurons (sometimes refered to as PV+ interneurons) are a subset of interneurons that feature distinct fast-spiking electrophysiological properties and are typically identified based on expression of the calcium-binding protein parvalbumin[1][2][3]

Anatomy edit

Their morphology typically falls into either the subcategory of basket cells or chandelier cells and are commonly ensheathed in perineuronal nets, although delineation of interneuron subtypes is a developing field[4]

Network Activity edit

PV+ Interneurons play significant roles in many aspects of network activity such as feedforward inhibition, feedback inhibition, network oscillations, and regulation of plasticity[5]

This type of cells receives the greatest amount of excitatory input of any inhibitory neuron in the cortex, and they powerfully regulate local pyramidal cell network activity[6][7]

During gamma-oscillations the metabolic demand on PV+ interneurons is similar to that observed in seizure-like events[8], suggesting that during heightened activity this cell type is prone to metabolic disruption [9][10]

Perineuronal Nets edit

Supporting structures such as the specialized ECM structure perineuronal nets (PNNs) preferentially[11] wrap around PV+ interneurons to support their fast-spiking properties by providing a cation rich environment, reducing membrance capacitance and buffering them against metabolic stress [12] [13]

Critical Period Regulation edit

The developmental trajectory of PV+ interneurons and the supporting PNNs that wrap around them coincides with critical period opening and closure, with maturation of the PV+ interneurons and the PNNs marking the closure of the critical period.[14][15][16][17]

Treatment with NMDA receptor antagonist such as ketamine, PCP, or MK-801 that disrupt the NMDAR-mediated input to PV+ Interneurons have the potential to modulate critical period plasticity[18]

References edit

  1. ^ Hu, Hua; Gan, Jian; Jonas, Peter (August 2014). "Fast-spiking, parvalbumin + GABAergic interneurons: From cellular design to microcircuit function". Science. 345 (6196). doi:10.1126/science.1255263. ISSN 0036-8075. PMID 25082707.
  2. ^ Stedehouder, J.; Couey, J. J.; Brizee, D.; Hosseini, B.; Slotman, J. A.; Dirven, C. M. F.; Shpak, G.; Houtsmuller, A. B.; Kushner, S. A. (2017-08-09). "Fast-spiking Parvalbumin Interneurons are Frequently Myelinated in the Cerebral Cortex of Mice and Humans". Cerebral Cortex. 27 (10): 5001–5013. doi:10.1093/cercor/bhx203. ISSN 1047-3211. PMID 28922832.
  3. ^ Bartholome, Odile; de la Brassinne Bonardeaux, Orianne; Neirinckx, Virginie; Rogister, Bernard (2020). "A Composite Sketch of Fast-Spiking Parvalbumin-Positive Neurons". Cerebral Cortex Communications. 1 (1): tgaa026. doi:10.1093/texcom/tgaa026. ISSN 2632-7376. PMC 8153048. PMID 34296100.
  4. ^ Lee, Brian R.; Dalley, Rachel; Miller, Jeremy A.; Chartrand, Thomas; Close, Jennie; Mann, Rusty; Mukora, Alice; Ng, Lindsay; Alfiler, Lauren; Baker, Katherine; Bertagnolli, Darren; Brouner, Krissy; Casper, Tamara; Csajbok, Eva; Donadio, Nicholas (2023-10-13). "Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex". Science. 382 (6667): eadf6484. doi:10.1126/science.adf6484. hdl:1871.1/71259d89-ad52-46ea-bcc5-bf472765c3ce. ISSN 0036-8075. PMID 37824669.
  5. ^ Ruden, Jacob B.; Dugan, Laura L.; Konradi, Christine (January 2021). "Parvalbumin interneuron vulnerability and brain disorders". Neuropsychopharmacology. 46 (2): 279–287. doi:10.1038/s41386-020-0778-9. ISSN 0893-133X. PMC 7852528. PMID 32722660.
  6. ^ Behrens, M. Margarita; Ali, Sameh S.; Dao, Diep N.; Lucero, Jacinta; Shekhtman, Grigoriy; Quick, Kevin L.; Dugan, Laura L. (2007-12-07). "Ketamine-Induced Loss of Phenotype of Fast-Spiking Interneurons Is Mediated by NADPH-Oxidase". Science. 318 (5856): 1645–1647. Bibcode:2007Sci...318.1645B. doi:10.1126/science.1148045. ISSN 0036-8075. PMID 18063801.
  7. ^ Gulyás, Attila I.; Megı́as, Manuel; Emri, Zsuzsa; Freund, Tamás F. (1999-11-15). "Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus". The Journal of Neuroscience. 19 (22): 10082–10097. doi:10.1523/JNEUROSCI.19-22-10082.1999. ISSN 0270-6474. PMC 6782984. PMID 10559416.
  8. ^ Kann, Oliver; Huchzermeyer, Christine; Kovács, Richard; Wirtz, Stefanie; Schuelke, Markus (February 2011). "Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria". Brain: A Journal of Neurology. 134 (Pt 2): 345–358. doi:10.1093/brain/awq333. ISSN 1460-2156. PMID 21183487.
  9. ^ Inan, Melis; Zhao, Mingrui; Manuszak, Monica; Karakaya, Cansu; Rajadhyaksha, Anjali M.; Pickel, Virginia M.; Schwartz, Theodore H.; Goldstein, Peter A.; Manfredi, Giovanni (September 2016). "Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability". Neurobiology of Disease. 93: 35–46. doi:10.1016/j.nbd.2016.04.004. PMID 27105708.
  10. ^ Kann, Oliver; Papageorgiou, Ismini E; Draguhn, Andreas (August 2014). "Highly Energized Inhibitory Interneurons are a Central Element for Information Processing in Cortical Networks". Journal of Cerebral Blood Flow & Metabolism. 34 (8): 1270–1282. doi:10.1038/jcbfm.2014.104. ISSN 0271-678X. PMC 4126088. PMID 24896567.
  11. ^ Morris, Neil P.; Henderson, Zaineb (March 2000). "Perineuronal nets ensheath fast spiking, parvalbumin-immunoreactive neurons in the medial septum/diagonal band complex". European Journal of Neuroscience. 12 (3): 828–838. doi:10.1046/j.1460-9568.2000.00970.x. ISSN 0953-816X. PMID 10762312.
  12. ^ Burket, Jessica A.; Webb, Jason D.; Deutsch, Stephen I. (August 2021). "Perineuronal Nets and Metal Cation Concentrations in the Microenvironments of Fast-Spiking, Parvalbumin-Expressing GABAergic Interneurons: Relevance to Neurodevelopment and Neurodevelopmental Disorders". Biomolecules. 11 (8): 1235. doi:10.3390/biom11081235. ISSN 2218-273X. PMC 8391699. PMID 34439901.
  13. ^ Tewari, Bhanu P.; Chaunsali, Lata; Campbell, Susan L.; Patel, Dipan C.; Goode, Adam E.; Sontheimer, Harald (2018-11-09). "Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy". Nature Communications. 9 (1): 4724. Bibcode:2018NatCo...9.4724T. doi:10.1038/s41467-018-07113-0. ISSN 2041-1723. PMC 6226462. PMID 30413686.
  14. ^ Reh, Rebecca K.; Dias, Brian G.; Nelson, Charles A.; Kaufer, Daniela; Werker, Janet F.; Kolb, Bryan; Levine, Joel D.; Hensch, Takao K. (2020-09-22). "Critical period regulation across multiple timescales". Proceedings of the National Academy of Sciences. 117 (38): 23242–23251. Bibcode:2020PNAS..11723242R. doi:10.1073/pnas.1820836117. ISSN 0027-8424. PMC 7519216. PMID 32503914.
  15. ^ Wingert, Jereme C.; Sorg, Barbara A. (2021-05-10). "Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review". Frontiers in Synaptic Neuroscience. 13. doi:10.3389/fnsyn.2021.673210. ISSN 1663-3563. PMC 8141737. PMID 34040511.
  16. ^ Faini, Giulia; Aguirre, Andrea; Landi, Silvia; Lamers, Didi; Pizzorusso, Tommaso; Ratto, Gian Michele; Deleuze, Charlotte; Bacci, Alberto (2018-11-28). "Author response: Perineuronal nets control visual input via thalamic recruitment of cortical PV interneurons". doi:10.7554/elife.41520.030. {{cite journal}}: Cite journal requires |journal= (help)
  17. ^ Gibel-Russo, Rachel; Benacom, David; Di Nardo, Ariel A. (2022-04-26). "Non-Cell-Autonomous Factors Implicated in Parvalbumin Interneuron Maturation and Critical Periods". Frontiers in Neural Circuits. 16. doi:10.3389/fncir.2022.875873. ISSN 1662-5110. PMC 9115720. PMID 35601531.
  18. ^ Klimczak, Patrycja; Rizzo, Arianna; Castillo-Gómez, Esther; Perez-Rando, Marta; Gramuntell, Yaiza; Beltran, Marc; Nacher, Juan (2021-09-22). "Parvalbumin Interneurons and Perineuronal Nets in the Hippocampus and Retrosplenial Cortex of Adult Male Mice After Early Social Isolation Stress and Perinatal NMDA Receptor Antagonist Treatment". Frontiers in Synaptic Neuroscience. 13. doi:10.3389/fnsyn.2021.733989. ISSN 1663-3563. PMC 8493248. PMID 34630066.