In probability theory, an additive Markov chain is a Markov chain with an additive conditional probability function. Here the process is a discrete-time Markov chain of order m and the transition probability to a state at the next time is a sum of functions, each depending on the next state and one of the m previous states.

Definition edit

An additive Markov chain of order m is a sequence of random variables X1X2X3, ..., possessing the following property: the probability that a random variable Xn has a certain value xn under the condition that the values of all previous variables are fixed depends on the values of m previous variables only (Markov chain of order m), and the influence of previous variables on a generated one is additive,

 

Binary case edit

A binary additive Markov chain is where the state space of the chain consists on two values only, Xn ∈ { x1x2 }. For example, Xn ∈ { 0, 1 }. The conditional probability function of a binary additive Markov chain can be represented as

 
 

Here   is the probability to find Xn = 1 in the sequence and F(r) is referred to as the memory function. The value of   and the function F(r) contain all the information about correlation properties of the Markov chain.

Relation between the memory function and the correlation function edit

In the binary case, the correlation function between the variables   and   of the chain depends on the distance   only. It is defined as follows:

 

where the symbol   denotes averaging over all n. By definition,

 

There is a relation between the memory function and the correlation function of the binary additive Markov chain:[1]

 

See also edit

Notes edit

  1. ^ S.S. Melnyk, O.V. Usatenko, and V.A. Yampol’skii. (2006) "Memory functions of the additive Markov chains: applications to complex dynamic systems", Physica A, 361 (2), 405–415 doi:10.1016/j.physa.2005.06.083

References edit

  • A.A. Markov. (1906) "Rasprostranenie zakona bol'shih chisel na velichiny, zavisyaschie drug ot druga". Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 2-ya seriya, tom 15, 135–156
  • A.A. Markov. (1971) "Extension of the limit theorems of probability theory to a sum of variables connected in a chain". reprinted in Appendix B of: R. Howard. Dynamic Probabilistic Systems, volume 1: Markov Chains. John Wiley and Sons
  • S. Hod; U. Keshet (2004). "Phase transition in random walks with long-range correlations". Phys. Rev. E. 70 (1 Pt 2): 015104. arXiv:cond-mat/0311483. Bibcode:2004PhRvE..70a5104H. doi:10.1103/PhysRevE.70.015104. PMID 15324113. S2CID 18169687.
  • S.L. Narasimhan; J.A. Nathan; K.P.N. Murthy (2005). "Can coarse-graining introduce long-range correlations in a symbolic sequence?". Europhys. Lett. 69 (1): 22. arXiv:cond-mat/0409042. Bibcode:2005EL.....69...22N. doi:10.1209/epl/i2004-10307-2. S2CID 250845691.
  • Ramakrishnan, S. (1981) "Finitely Additive Markov Chains", Transactions of the American Mathematical Society, 265 (1), 247–272 JSTOR 1998493