Vinyltriethoxysilane

Vinyltriethoxysilane is an organosilicon compound with the formula (C2H5O)3SiCH=CH2. It is a colorless liquid. The compound is bifunctional, featuring both a vinyl group and hydrolytically sensitive ethoxysilyl groups. As such it is a crosslinking agent.[1]

Vinyltriethoxysilane
Vinyltriethoxysilane.png
Names
Preferred IUPAC name
Ethenyltri(ethoxy)silane
Other names
Triethoxyvinylsilane
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.000.984 Edit this at Wikidata
UNII
  • InChI=1S/C8H18O3Si/c1-5-9-12(8-4,10-6-2)11-7-3/h8H,4-7H2,1-3H3
    Key: FWDBOZPQNFPOLF-UHFFFAOYSA-N
  • CCO[Si](C=C)(OCC)OCC
Properties
C8H18O3Si
Molar mass 190.31
Appearance Colorless liquid
Density 0.903 g/cm3
Boiling point 160–161 °C (320–322 °F; 433–434 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

ApplicationsEdit

Vinyltriethoxysilane and the related vinyltrimethoxysilane are using as monomers and comonomer for polymers such as ethylene-vinyltrimethoxysilane and ethylene-vinyl acetate-vinyltrimethoxysilane. Vinyltrialkoxysilanes are also used as cross-linking agents during the manufacture of cross-linked polyethylene (PEX). The alkoxysilane moiety is reactive toward water, and in the presence of moisture, it forms silicon-oxygen-silicon bonds that cross-link the material to cure it. Moisture-curable polymers are used as electrical insulation in some kinds of cables and for water pipe in under-floor heating installations.

Vinyltrialkoxysilanes are also used as a coupling agents or adhesion promoters for treatment of glass fibers and particulate minerals in order to form stronger bonds with resin and produce fiberglass with better mechanical properties. Amino-functional silanes such as (3-aminopropyl)triethoxysilane and epoxy-functional silanes are used for the same purpose. The silane group attaches to the glass substrate via covalent Si-O-Si bond, while the resin reacts with the vinyl-, amino-, or epoxy- group and binds to it.

ReferencesEdit

  1. ^ Wolff, Siegfried (1996). "Chemical Aspects of Rubber Reinforcement by Fillers". Rubber Chemistry and Technology. 69 (3): 325–346. doi:10.5254/1.3538376.