Open main menu

Wikipedia β

The VLS cells on board USS San Jacinto
A Tomahawk missile canister being loaded into a VLS aboard the Arleigh Burke-class destroyer USS Curtis Wilbur

A vertical launching system (VLS) is an advanced system for holding and firing missiles on mobile naval platforms, such as surface ships and submarines. Each vertical launch system consists of a number of cells, which can hold one or more missiles ready for firing. Typically, each cell can hold a number of different types of missiles, allowing the ship flexibility to load the best set for any given mission. Further, when new missiles are developed, they are typically fitted to the existing vertical launch systems of that nation, allowing existing ships to use new types of missiles without expensive rework. When the command is given, the missile flies straight up long enough to clear the cell and the ship, and then turns on course.

A VLS allows surface combatants to have a greater number of weapons ready for firing at any given time compared to older launching systems such as the Mark 13 single-arm and Mark 26 twin-arm launchers, which were fed from behind by a magazine below the main deck. In addition to greater firepower, VLS is much more damage tolerant and reliable than the previous systems, and has a lower radar cross-section (RCS). The U.S. Navy now relies exclusively on VLS for its guided missile destroyers and cruisers.

The most widespread vertical launch system in the world is the Mark 41, developed by the United States Navy. More than 11,000 Mark 41 VLS missile cells have been delivered, or are on order, for use on 186 ships across 19 ship classes, in 11 navies around the world. This system currently serves with the US Navy as well as the Australian, Danish, Dutch, German, Japanese, New Zealand, Norwegian, South Korean, Spanish, and Turkish navies, while others like the Greek Navy preferred the similar Mark 48 system.[1]

The advanced Mark 57 vertical launch system is used on the new Zumwalt-class destroyer. The older Mark 13 and Mark 26 systems remain in service on ships that were sold to other countries such as Taiwan and Poland.

When installed on an SSN (nuclear-powered attack submarine), a VLS allows a greater number and variety of weapons to be deployed, compared with using only torpedo tubes.

Contents

Hot launch and cold launchEdit

 
Diagram depicting a hot launch from a Mark 41 VLS

A vertical launch system can be either hot launch, where the missile ignites in the cell, or cold launch, where the missile is expelled by gas produced by a gas generator which is not part of the missile itself, and then the missile ignites. "Cold" means relatively cold compared with rocket engine exhaust. A hot launch system does not require an ejection mechanism, but does require some way of disposing of the missile's exhaust and heat as it leaves the cell. If the missile ignites in a cell without an ejection mechanism, the cell must withstand the tremendous heat generated without igniting the missiles in the adjacent cells.

 
US Navy Mark 41 Tomahawk hot launch.

An advantage of a hot-launch system is that the missile propels itself out of the launching cell using its own engine, which eliminates the need for a separate system to eject the missile from the launching tube. This potentially makes a hot-launch system relatively light, small, and economical to develop and produce, particularly when designed around smaller missiles. A potential disadvantage is that a malfunctioning missile could destroy the launch tube.

The advantage of the cold-launch system is in its safety: should a missile engine malfunction during launch, the cold-launch system can eject the missile thereby reducing or eliminating the threat. For this reason, Russian VLSs are often designed with a slant so that a malfunctioning missile will land in the water instead of on the ship's deck. As missile size grows, the benefits of ejection launching increase. Above a certain size, a missile booster cannot be safely ignited within the confines of a ship's hull. Most modern ICBMs and SLBMs are cold-launched.

American surface-ship VLSs have the missile cells arranged in a grid with one lid per cell and are "hot launch" systems; the engine ignites within the cell during the launch, and thus it requires exhaust piping for the missile flames and gasses. France, Italy and Britain use a similar hot-launching Sylver system in PAAMS. Russia produces both grid systems and a revolver design with more than one missile per lid. Russia also uses a cold launch system for some of its vertical launch missile systems, e.g., the Tor missile system. The People's Republic of China uses a circular "cold launch" system that ejects the missile from the launch tube before igniting the engine on the Type 052C destroyer, and also a rectangular ”hot launch" system with one lid per cell arranged in a grid on the Type 054A frigate.

Other platformsEdit

Transporter erector launchers are wheeled and tracked land vehicles for the launch of surface to air, and surface to surface missiles. In most systems the missiles are transported in a horizontal out of battery configuration, in order to fire the vehicle must stop and the transport/launch tube is raised to the vertical before firing.

BAe has filed patents relating to the use of Vertical Launch missiles from modified passenger aircraft.[2]

Systems in use by nationsEdit

  Australia
  Belgium
  Canada
  Chile
  People's Republic of China
Surface
Submarine
  Denmark
  France
  Germany
  Greece
  India
  Indonesia
 
SYLVER cells of Italian destroyer Caio Duilio
  Israel
  Italy
  Japan
  New Zealand
  South Korea
  Netherlands
  Norway
  Portugal
 
Soviet missile cruiser Frunze firing a missile from the Tor VLS
 
Top view of the Ticonderoga-class USS Lake Champlain (CG-57) with VLS visible fore and aft as the gray boxes near the bow and stern of the ship.
  South Africa
  Russia
  Singapore
  Spain
  Thailand
  Turkey
  United Kingdom
Surface
Submarine
  United States
Surface
 
VLS Mark 41 Canister Types
Submarine

See alsoEdit

ReferencesEdit

External linksEdit