Open main menu

Plot of microprocessor transistor counts against dates of introduction. The curve shows counts doubling every two years, per Moore's law.

The transistor count is the number of transistors on an integrated circuit (IC). Transistor count is the most common measure of IC complexity, although there are caveats. For instance, the majority of transistors are contained in the cache memories in modern microprocessors, which consist mostly of the same memory cell circuits replicated many times. The rate at which transistor counts have increased generally follows Moore's law, which observed that the transistor count doubles approximately every two years.

As of 2017, the largest transistor count in a commercially available single-chip microprocessor is 19.2 billion, in AMD's Ryzen-based Epyc. As of 2018, the highest in a field-programmable gate array (FPGA) is Xilinx's Everest/Versal FPGA with around 50 billion transistors, using TSMC's 7 nanometer semiconductor process.[1][2] As of 2019, the highest transistor count in any IC chip is Samsung's eUFS (1 TB) V-NAND flash memory chip, with 2 trillion transistors (4-bit per transistor).[3][4]

The transistor density is the number of transistors that are fabricated per unit area, typically measured in terms of the number of transistors per square millimeter (mm²). The transistor density usually correlates with the gate length of a semiconductor node (also known as a semiconductor manufacturing process), typically measured in nanometers (nm). As of 2019, the semiconductor node with the highest transistor density is TSMC's 5 nanometer node, with 171.3 million transistors per square millimeter.[5]

Contents

MicroprocessorsEdit

A microprocessor incorporates the functions of a computer's central processing unit on a single integrated circuit. It is a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output.

Processor Transistor count Date of introduction Designer Process Area
Intel 4004 2,300 1971 Intel 10,000 nm 12 mm²
Intel 8008 3,500 1972 Intel 10,000 nm 14 mm²
NEC μCOM-4 2,500[6][7] 1973 NEC 7,500 nm[8] ?
Toshiba TLCS-12 2,500[9] 1973 Toshiba 6,000 nm 32 mm²
Motorola 6800 4,100 1974 Motorola 6,000 nm 16 mm²
Intel 8080 4,500 1974 Intel 6,000 nm 20 mm²
TMS 1000 8,000 1974[10] Texas Instruments 8,000 nm 11 mm²
MOS Technology 6502 3,510[11] 1975 MOS Technology 8,000 nm 21 mm²
RCA 1802 5,000 1976 RCA 5,000 nm 27 mm²
Zilog Z80 8,500 1976 Zilog 4,000 nm 18 mm²
Intel 8085 6,500 1976 Intel 3,000 nm 20 mm²
Motorola 6809 9,000 1978 Motorola 5,000 nm 21 mm²
Intel 8086 29,000 1978 Intel 3,000 nm 33 mm²
Zilog Z8000 17,500[12] 1979 Zilog
Intel 8088 29,000 1979 Intel 3,000 nm 33 mm²
Motorola 68000 68,000[13] 1979 Motorola 3,500 nm 44 mm²
WDC 65C02 11,500[14] 1981 WDC 3,000 nm 6 mm²
Intel 80186 55,000 1982 Intel 3,000 nm 60 mm²
Intel 80286 134,000 1982 Intel 1,500 nm 49 mm²
WDC 65C816 22,000[15] 1983 WDC 3,000 nm[16] 9 mm²
NEC V20 63,000 1984 NEC
Motorola 68020 190,000[17] 1984 Motorola 2,000 nm 85 mm²
Intel 80386 275,000 1985 Intel 1,500 nm 104 mm²
ARM 1 25,000[17] 1985 Acorn 3,000 nm 50 mm²
Novix NC4016 16,000[18] 1985[19] Harris Corporation 3,000 nm[20]
SPARC MB86900 110,000[21] 1986 Fujitsu 1,200 nm
NEC V60[22] 375,000 1986 NEC 1,500 nm
ARM 2 30,000[17] 1986 Acorn 2,000 nm 30 mm²
NEC V70[22] 385,000 1987 NEC 1,500 nm
Hitachi Gmicro/200[23] 730,000 1987 Hitachi 1,000 nm
Motorola 68030 273,000 1987 Motorola 800 nm 102 mm²
TI Explorer's 32-bit Lisp machine chip 553,000[24] 1987 Texas Instruments 2,000 nm[25]
DEC WRL MultiTitan 180,000[26] 1988 DEC WRL 1,500 nm 61 mm²
Intel i960 250,000[27] 1988 Intel 1,500 nm[28]
Intel i960CA 600,000[28] 1989 Intel 800 nm 143 mm²
Intel i860 1,000,000[29] 1989 Intel
Intel 80486 1,180,235 1989 Intel 1000 nm 173 mm²
ARM 3 310,000 1989 Acorn 1,500 nm 87 mm²
68040 1,200,000 1990 Motorola 650 nm 152 mm²
R4000 1,350,000 1991 MIPS 1,000 nm 213 mm²
ARM 6 35,000 1991 ARM 800 nm
Hitachi SH-1 600,000[30] 1992[31] Hitachi 800 nm 10 mm²
Intel i960CF 900,000[28] 1992 Intel 125 mm²
Hitachi HARP-1 2,800,000[32] 1993 Hitachi 500 nm 267 mm²
Pentium 3,100,000 1993 Intel 800 nm 294 mm²
ARM700 578,977[33] 1994 ARM 700 nm 68.51 mm²
68060 2,500,000 1994 Motorola 600 nm 218 mm²
SA-110 2,500,000[17] 1995 Acorn/DEC/Apple 350 nm 50 mm²
ARM 9TDMI 111,000[17] 1999 Acorn 350 nm 4.8 mm²
Pentium Pro 5,500,000[34] 1995 Intel 500 nm 307 mm²
AMD K5 4,300,000 1996 AMD 500 nm 251 mm²
Hitachi SH-4 10,000,000[35] 1997 Hitachi 200 nm[36] 42 mm²[37]
Pentium II Klamath 7,500,000 1997 Intel 350 nm 195 mm²
AMD K6 8,800,000 1997 AMD 350 nm 162 mm²
Pentium II Deschutes 7,500,000 1998 Intel 250 nm 113 mm²
Pentium III Katmai 9,500,000 1999 Intel 250 nm 128 mm²
Emotion Engine 13,500,000[38] 1999 Sony/Toshiba 180 nm[39] 240 mm²[40]
Gekko 21,000,000[41] 2000 IBM/Nintendo 180 nm 43 mm²
Pentium III Coppermine 21,000,000 2000 Intel 180 nm 80 mm²
Pentium II Mobile Dixon 27,400,000 1999 Intel 180 nm 180 mm²
AMD K6-III 21,300,000 1999 AMD 250 nm 118 mm²
AMD K7 22,000,000 1999 AMD 250 nm 184 mm²
Pentium 4 Willamette 42,000,000 2000 Intel 180 nm 217 mm²
SPARC64 V 191,000,000[42] 2001 Fujitsu 130 nm[43] 290 mm²
Pentium III Tualatin 45,000,000 2001 Intel 130 nm 81 mm²
Pentium 4 Northwood 55,000,000 2002 Intel 130 nm 145 mm²
Pentium 4 Prescott 112,000,000 2004 Intel 90 nm 110 mm²
SPARC64 V+ 400,000,000[44] 2004 Fujitsu 90 nm 294 mm²
Pentium 4 Prescott-2M 169,000,000 2005 Intel 90 nm 143 mm²
Pentium 4 Cedar Mill 184,000,000 2006 Intel 65 nm 90 mm²
Pentium D Smithfield 228,000,000 2005 Intel 90 nm 206 mm²
Pentium D Presler 362,000,000 2006 Intel 65 nm 162 mm²
SPARC64 VI 540,000,000 2007[45] Fujitsu 90 nm 421 mm²
Atom 47,000,000 2008 Intel 45 nm 24 mm²
Barton 54,300,000 2003 AMD 130 nm 101 mm²
AMD K8 105,900,000 2003 AMD 130 nm 193 mm²
Itanium 2 McKinley 220,000,000 2002 Intel 180 nm 421 mm²
Xenon 165,000,000 2005 IBM 90 nm
Cell 250,000,000[46] 2005 Sony/IBM/Toshiba 90 nm 221 mm²
Core 2 Duo Conroe 291,000,000 2006 Intel 65 nm 143 mm²
Core 2 Duo Allendale 169,000,000 2007 Intel 65 nm 111 mm²
Itanium 2 Madison 6M 410,000,000 2003 Intel 130 nm 374 mm²
Uniphier 250,000,000[47] 2007 Matsushita 45 nm ?
SPARC64 VII 600,000,000 2008[48] Fujitsu 65 nm 445 mm²
SPARC64 VIIIfx 760,000,000[49] 2009 Fujitsu 45 nm 513 mm²
SPARC64 IXfx 1,870,000,000[50] 2011 Fujitsu 40 nm 484 mm²
Atom "Medfield" 432,000,000[51] 2012 Intel 32 nm 64 mm²
AMD K10 quad-core 2M L3 463,000,000[52] 2007 AMD 65 nm 283 mm²
ARM Cortex-A9 26,000,000[53] 2007 ARM 45 nm 31 mm²
Core 2 Duo Wolfdale 3M 230,000,000 2008 Intel 45 nm 83 mm²
Itanium 2 with 9 MB cache 592,000,000 2004 Intel 130 nm 432 mm²
Core 2 Duo Wolfdale 411,000,000 2007 Intel 45 nm 107 mm²
Core i7 (Quad) 731,000,000 2008 Intel 45 nm 263 mm²
AMD K10 quad-core 6M L3 758,000,000[52] 2008 AMD 45 nm 258 mm²
POWER6 789,000,000 2007 IBM 65 nm 341 mm²
Six-core Opteron 2400 904,000,000 2009 AMD 45 nm 346 mm²
16-core SPARC T3 1,000,000,000[54] 2010 Sun/Oracle 40 nm 377 mm²
SPARC64 X 2,990,000,000[55] 2012 Fujitsu 28 nm 600 mm²
Apple A7 (dual-core ARM64 "mobile SoC") 1,000,000,000 2013 Apple 28 nm 102 mm²
Quad-core + GPU Core i7 1,160,000,000 2011 Intel 32 nm 216 mm²
Six-core Core i7 (Gulftown) 1,170,000,000 2010 Intel 32 nm 240 mm²
8-core POWER7 32M L3 1,200,000,000 2010 IBM 45 nm 567 mm²
8-core AMD Bulldozer 1,200,000,000[56] 2012 AMD 32 nm 315 mm²
Quad-core + GPU AMD Trinity 1,303,000,000 2012 AMD 32 nm 246 mm²
Quad-core z196[57] 1,400,000,000 2010 IBM 45 nm 512 mm²
Quad-core + GPU Core i7 Ivy Bridge 1,400,000,000 2012 Intel 22 nm 160 mm²
Quad-core + GPU Core i7 Haswell 1,400,000,000[58] 2014 Intel 22 nm 177 mm²
Dual-core Itanium 2 1,700,000,000[59] 2006 Intel 90 nm 596 mm²
Quad-core + GPU GT2 Core i7 Skylake K 1,750,000,000 2015 Intel 14 nm 122 mm²
Six-core Core i7 Ivy Bridge E 1,860,000,000 2013 Intel 22 nm 256 mm²
Dual-core + GPU Iris Core i7 Broadwell-U 1,900,000,000[60] 2015 Intel 14 nm 133 mm²
Six-core Xeon 7400 1,900,000,000 2008 Intel 45 nm 503 mm²
Quad-core Itanium Tukwila 2,000,000,000[61] 2010 Intel 65 nm 699 mm²
Apple A8 (dual-core ARM64 "mobile SoC") 2,000,000,000 2014 Apple 20 nm 89 mm²
Apple A9 (dual-core ARM64 "mobile SoC") > 2,000,000,000 2015 Apple 14 nm (Samsung) / 16 nm (TSMC) 96 mm² (Samsung) / 104.5 mm² (TSMC)
Apple A9X (dual-core ARM64 "mobile SoC") > 3,000,000,000 2015 Apple 16 nm 143.9 mm²
8-core POWER7+ 80 MB L3 cache 2,100,000,000 2012 IBM 32 nm 567 mm²
Six-core Core i7/8-core Xeon E5
(Sandy Bridge-E/EP)
2,270,000,000[62] 2011 Intel 32 nm 434 mm²
8-core Xeon Nehalem-EX 2,300,000,000[63] 2010 Intel 45 nm 684 mm²
8-core Core i7 Haswell-E 2,600,000,000[64] 2014 Intel 22 nm 355 mm²
10-core Xeon Westmere-EX 2,600,000,000 2011 Intel 32 nm 512 mm²
Six-core zEC12 2,750,000,000 2012 IBM 32 nm 597 mm²
Apple A8X (tri-core ARM64 "mobile SoC") 3,000,000,000[65] 2014 Apple 20 nm 128 mm²
Qualcomm Snapdragon 835 (octa-core ARM64 "mobile SoC") 3,000,000,000[66][67] 2016 Qualcomm 10 nm 72.3 mm²
Qualcomm Snapdragon 845 (octa-core ARM64 "mobile SoC") 5,300,000,000[68] 2017 Qualcomm 10 nm 94 mm²
Qualcomm Snapdragon 710 (octa-core ARM64 "mobile SoC") 2018 Qualcomm 10 nm
Qualcomm Snapdragon 675 (octa-core ARM64 "mobile SoC") 2018 Qualcomm 11 nm
Qualcomm Snapdragon 850 (octa-core ARM64 "mobile SoC") 5,300,000,000[69] 2017 Qualcomm 10 nm 94  mm²
Qualcomm Snapdragon 855 (octa-core ARM64 "mobile SoC") 2018 Qualcomm 7 nm 73.27  mm²
Samsung Exynos 9820 (octa-core ARM64 "mobile SoC") 2019 Samsung 8 nm 127  mm²
Qualcomm Snapdragon 8cx / SCX8180 (octa-core ARM64 "mobile SoC") 8,500,000,000[70] 2018 Qualcomm 7 nm 112  mm²
8-core Itanium Poulson 3,100,000,000 2012 Intel 32 nm 544 mm²
10-core Core i7 Broadwell-E 3,200,000,000[71] 2016 Intel 14 nm 246 mm²[72]
Apple A10 Fusion (quad-core ARM64 "mobile SoC") 3,300,000,000 2016 Apple 16 nm 125 mm²
IBM z13 3,990,000,000 2015 IBM 22 nm 678 mm²
12-core POWER8 4,200,000,000 2013 IBM 22 nm 650 mm²
Apple A11 Bionic (hexa-core ARM64 "mobile SoC") 4,300,000,000 2017 Apple 10 nm 89.23 mm²
15-core Xeon Ivy Bridge-EX 4,310,000,000[73] 2014 Intel 22 nm 541 mm²
Zeppelin SoC Ryzen 4,800,000,000[74] 2017 AMD 14 nm 192 mm²
Ryzen 5 1600 Ryzen 4,800,000,000[75] 2017 AMD 14 nm 213 mm²
Ryzen 5 1600 X Ryzen 4,800,000,000[76] 2017 AMD 14 nm 213 mm²
61-core Xeon Phi 5,000,000,000[77] 2012 Intel 22 nm 720 mm²
Xbox One main SoC 5,000,000,000 2013 Microsoft/AMD 28 nm 363 mm²
18-core Xeon Haswell-E5 5,560,000,000[78] 2014 Intel 22 nm 661 mm²
IBM z14 6,100,000,000 2017 IBM 14 nm 696 mm²
Apple A12 Bionic (hexa-core ARM64 "mobile SoC") 6,900,000,000[79][80] 2018 Apple 7 nm 83.27 mm2
HiSilicon Kirin 960 (octa-core ARM64 "mobile SoC") 4,000,000,000[81] 2016 Huawei 16 nm 110.00 mm2
HiSilicon Kirin 980 (octa-core ARM64 "mobile SoC") 6,900,000,000[82] 2018 Huawei 7 nm 74.13 mm2
HiSilicon Kirin 970 (octa-core ARM64 "mobile SoC") 5,500,000,000[83] 2017 Huawei 10 nm 96.72 mm2
HiSilicon Kirin 710 (octa-core ARM64 "mobile SoC") 5,500,000,000[84] 2018 Huawei 12 nm
Xbox One X (Project Scorpio) main SoC 7,000,000,000[85] 2017 Microsoft/AMD 16 nm 360 mm²[85]
IBM z13 Storage Controller 7,100,000,000 2015 IBM 22 nm 678 mm²
28-core Xeon Platinum 8180 8,000,000,000[86] 2017 Intel 14 nm
22-core Xeon Broadwell-E5 7,200,000,000[87] 2016 Intel 14 nm 456 mm²
POWER9 8,000,000,000 2017 IBM 14 nm 695 mm²
72-core Xeon Phi 8,000,000,000 2016 Intel 14 nm 683 mm²
IBM z14 Storage Controller 9,700,000,000 2017 IBM 14 nm 696 mm²
Freedom U500 Base Platform Chip (E51, 4×U54) RISC-V 250,000,000[88] 2017 SiFive 28 nm ~30 mm²
32-core SPARC M7 10,000,000,000[89] 2015 Oracle 20 nm
SPARC64 XII (12-core) 5,450,000,000[90] 2017 Fujitsu 20 nm 795 mm2
Apple A12X Bionic (octa-core ARM64 "mobile SoC") 10,000,000,000[91] 2018 Apple 7 nm 122 mm2
Apple A10X Fusion (hexa-core ARM64 "mobile SoC") 4,300,000,000[92] 2017 Apple 10 nm 96.40 mm2
Centriq 2400 18,000,000,000[93] 2017 Qualcomm 10 nm 398 mm2
32-core AMD Epyc 19,200,000,000 2017 AMD 14 nm 768 mm2
Fujitsu A64FX 8,876,000,000[94] 2018[95] Fujitsu 7 nm
GC2 IPU 23,600,000,000 2018 Graphcore 16 nm 825 mm2
Tegra Xavier SoC 9,000,000,000[96] 2018 Nvidia 12 nm 350 mm²

GPUsEdit

A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the building of images in a frame buffer intended for output to a display.

Processor Transistor count Date of introduction Manufacturer Process Area
NEC µPD7220 GDC 40,000[97] 1982 NEC 5,000 nm
Hitachi ARTC HD63484 60,000[98] 1984 Hitachi
YM7101 VDP 100,000[99] 1988 Sega/Yamaha
Tom & Jerry 750,000[99] 1993 Atari/Flare
Saturn VDP1 1,000,000[100] 1994 Sega/Hitachi
PlayStation GPU 1,000,000[101] 1994 Sony/Toshiba[102]
NV1 1,000,000[100] 1995 Nvidia/Sega 500 nm 90 mm²
Reality Coprocessor 2,600,000[103] 1996 Silicon Graphics 81 mm²
PowerVR 1,200,000[104] 1996 VideoLogic/NEC 350 nm
Voodoo Graphics 1,000,000[105] 1996 3dfx Interactive 500 nm
Voodoo Rush 1,000,000[105] 1997 3dfx Interactive 500 nm
NV3 3,500,000 1997 Nvidia 350 nm 90 mm²
PowerVR2 CLX2 10,000,000[35][106] 1998 VideoLogic/NEC 250 nm[107] 116 mm²[37]
i740 3,500,000[105] 1998 Intel/Real3D 350 nm
Voodoo 2 4,000,000[105] 1998 3dfx Interactive 350 nm
Voodoo Rush 4,000,000[105] 1998 3dfx Interactive 350 nm
Riva TNT 7,000,000[105] 1998 Nvidia 350 nm
PowerVR2 PMX1 6,000,000[108] 1999 VideoLogic/NEC 250 nm
Rage 128 8,000,000 1999 ATI 250 nm 70 mm²
Voodoo 3 8,100,000[109] 1999 3dfx Interactive 250 nm
Graphics Synthesizer 43,000,000[41] 1999 Sony/Toshiba 180 nm[39] 279 mm²[38][40]
NV5 15,000,000 1999 Nvidia 250 nm
NV10 17,000,000[110] 1999 Nvidia 220 nm 111 mm²
Voodoo 4 14,000,000[105] 2000 3dfx Interactive 220 nm
NV11 20,000,000 2000 Nvidia 180 nm 65 mm²
NV15 25,000,000 2000 Nvidia 180 nm 81 mm²
Voodoo 5 28,000,000[105] 2000 3dfx Interactive 220 nm
R100 30,000,000 2000 ATI 180 nm 97 mm²
Flipper 51,000,000[41] 2000[111] ArtX/ATI 180 nm 106 mm²
PowerVR3 KYRO 14,000,000[105] 2001 Imagination Technologies 250 nm
PowerVR3 KYRO II 15,000,000[105] 2001 Imagination Technologies 180 nm
NV2A 60,000,000[41] 2001 Nvidia 150 nm
NV20 57,000,000 2001 Nvidia 150 nm 128 mm²
R200 60,000,000 2001 ATI 150 nm 68 mm²
NV25 63,000,000 2002 Nvidia 150 nm 142 mm²
R300 107,000,000 2002 ATI 150 nm 218 mm²
R360 117,000,000 2003 ATI 150 nm 218 mm²
NV38 135,000,000 2003 Nvidia 130 nm 207 mm²
R480 160,000,000 2004 ATI 130 nm 297 mm²
NV40 222,000,000 2004 Nvidia 130 nm 305 mm²
Xenos 232,000,000[112] 2005 ATI 90 nm 182 mm²
RSX Reality Synthesizer 300,000,000[113] 2005 Nvidia/Sony 90 nm[114] 186 mm²
G86 Tesla 210,000,000 2007 Nvidia 80 nm 127 mm²
G98 Tesla 210,000,000 2008 Nvidia 65 nm 86 mm²
RV710 242,000,000 2008 AMD (formerly ATI) 55 nm 73 mm²
GT218 Tesla 260,000,000 2009 Nvidia 40 nm 57 mm²
G84 Tesla 289,000,000 2007 Nvidia 80 nm 169 mm²
Cedar RV810 292,000,000 2010 AMD 40 nm 59 mm²
GF119 Fermi 292,000,000 2011 Nvidia 40 nm 79 mm²
G70 303,000,000 2005 Nvidia 110 nm 333 mm²
G96 Tesla 314,000,000 2008 Nvidia 55 nm 121 mm²
R520 321,000,000 2005 AMD 90 nm 288 mm²
Caicos RV910 370,000,000 2011 AMD 40 nm 67 mm²
R580 384,000,000 2006 AMD 90 nm 352 mm²
GT216 Tesla 486,000,000 2009 Nvidia 40 nm 100 mm²
G94 Tesla 505,000,000 2008 Nvidia 65 nm 240 mm²
RV730 514,000,000 2008 AMD 55 nm 146 mm²
GF108 Fermi 585,000,000 2011 Nvidia 40 nm 116 mm²
Redwood RV830 627,000,000 2010 AMD 40 nm 104 mm²
RV670 666,000,000 2008 AMD 55 nm 192 mm²
G80 681,000,000 2006 Nvidia 90 nm 480 mm²
R600 700,000,000 2007 AMD 80 nm 420 mm²
Turks RV930 716,000,000 2011 AMD 40 nm 118 mm²
GT215 Tesla 727,000,000 2009 Nvidia 40 nm 144 mm²
G92 754,000,000 2007 Nvidia 65 nm 324 mm²
RV740 826,000,000 2009 AMD 40 nm 137 mm²
RV770 956,000,000 2008 AMD 55 nm 256 mm²
RV790 959,000,000[115] 2008 AMD 55 nm 282 mm²
Juniper RV840 1,040,000,000 2009 AMD 40 nm 166 mm²
Oland 1,040,000,000 2013 AMD 28 nm 90 mm²
GF106 Fermi 1,170,000,000 2010 Nvidia 40 nm 238 mm²
GK107 Kepler 1,270,000,000 2012 Nvidia 28 nm 118 mm²
GT200b Tesla 1,400,000,000 2008 Nvidia 55 nm 470 mm²
GT200 Tesla 1,400,000,000[116] 2008 Nvidia 65 nm 576 mm²
Cape Verde 1,500,000,000 2012 AMD 28 nm 123 mm²
Barts RV940 1,700,000,000 2010 AMD 40 nm 255 mm²
GP108 Pascal 1,850,000,000 2017 Nvidia 14 nm 74 mm²
GM107 Maxwell 1,870,000,000 2014 Nvidia 28 nm 148 mm²
GF104 Fermi 1,950,000,000 2011 Nvidia 40 nm 332 mm²
Bonaire 2,080,000,000 2013 AMD 28 nm 160 mm²
Cypress RV870 2,154,000,000[117] 2009 AMD 40 nm 334 mm²
Polaris 12 "Lexa" 2,200,000,000 2017 AMD 14 nm 101 mm²
GK106 Kepler 2,540,000,000 2012 Nvidia 28 nm 221 mm²
Cayman RV970 2,640,000,000 2010 AMD 40 nm 389 mm²
Pitcairn 2,800,000,000 2012 AMD 28 nm 212 mm²
GM206 Maxwell 2,940,000,000 2014 Nvidia 28 nm 228 mm²
Polaris 11 "Baffin" 3,000,000,000 2016 AMD 14 nm 123 mm²
GF100 Fermi 3,200,000,000[118] 2010 Mar Nvidia 40 nm 526 mm²
GF110 Fermi 3,000,000,000[118] 2010 Nov Nvidia 40 nm 520 mm²
GP107 Pascal 3,300,000,000 2017 Nvidia 14 nm 132 mm²
GK104 Kepler 3,540,000,000[119] 2012 Nvidia 28 nm 294 mm²
Tahiti 4,312,711,873[120] 2011 AMD 28 nm 365 mm²
GP106 Pascal 4,400,000,000 2016 Nvidia 16 nm 200 mm²
Tonga 5,000,000,000 2014 AMD 28 nm 366 mm²
GM204 Maxwell 5,200,000,000 2014 Nvidia 28 nm 398 mm²
Polaris 10 "Ellesmere" 5,700,000,000[121] 2016 AMD 14 nm 232 mm²
Hawaii 6,300,000,000 2013 AMD 28 nm 438 mm²
GK110 Kepler 7,080,000,000[122] 2012[123] Nvidia 28 nm 561 mm²
GP104 Pascal 7,200,000,000 2016 Nvidia 16 nm 314 mm²
GP102 Pascal 11,800,000,000 2017 Nvidia 16 nm 471 mm²
GM200 Maxwell 8,000,000,000 2015 Nvidia 28 nm 601 mm²
Fiji 8,900,000,000 2015 AMD 28 nm 596 mm²
Vega 10 12,500,000,000[124] 2017 AMD 14 nm 484 mm²
Vega 20 13,280,000,000 2018 AMD 7 nm 331 mm²
GP100 Pascal 15,300,000,000[125] 2016 Nvidia 16 nm 610 mm²
TU102 Turing 18,600,000,000[126] 2018 Nvidia 12 nm 754 mm²
GV100 Volta 21,100,000,000[127] 2017 Nvidia 12 nm 815 mm²

FPGAEdit

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing.

FPGA Transistor count Date of introduction Manufacturer Process Area Ref
Virtex ~70,000,000 1997 Xilinx
Virtex-E ~200,000,000 1998 Xilinx
Virtex-II ~350,000,000 2000 Xilinx 130 nm
Virtex-II PRO ~430,000,000 2002 Xilinx
Virtex-4 1,000,000,000 2004 Xilinx 90 nm
Virtex-5 1,100,000,000 2006 Xilinx 65 nm [128]
Stratix IV 2,500,000,000 2008 Altera 40 nm [129]
Stratix V 3,800,000,000 2011 Altera 28 nm [130]
Arria 10 5,300,000,000 2014 Altera 20 nm [131]
Virtex-7 6,800,000,000 2011 Xilinx 28 nm [132]
Stratix 10 Family device, 10GX5500/10SX5500 17,000,000,000 2017 Intel (formerly Altera) 14 nm 560 mm² [133]
Virtex-Ultrascale XCVU440 20,000,000,000+ 2014 Xilinx 20 nm [134]
Versal/Everest 50,000,000,000 2018 Xilinx 7 nm [135][136]

MemoryEdit

Semiconductor memory is an electronic data storage device, often used as computer memory, implemented on integrated circuits. Nearly all semiconductor memory since the 1970s have used MOSFET (MOS) transistors, replacing earlier bipolar junction transistors. There are two major types of semiconductor memory, random-access memory (RAM) and non-volatile memory (NVM). In turn, there are two major RAM types, dynamic random-access memory (DRAM) and static random-access memory (SRAM), as well as two major NVM types, flash memory and read-only memory (ROM).

Typical CMOS SRAM consists of 6 transistors per cell. For DRAM, 1T1C, which means one transistor and one capacitor structure, is common. Capacitor charged or not is used to store 1 or 0. For flash memory, the data is stored in floating gate, and the resistance of the transistor is sensed to interpret the data stored. Depending on how fine scale the resistance could be separated, one transistor could store up to 3-bits, meaning eight distinctive level of resistance possible per transistor. However, the fine the scale comes with cost of repeatability therefore reliability. Typically, low grade 2-bits MLC flash is used for flash drives, so a 16 GB flash drive contains roughly 64 billion transistors.

For SRAM chips, six-transistor cells (six transisters per bit) was the standard.[137] DRAM chips during the early 1970s had three-transistor cells (three transistors per bit), before single-transistor cells (one transistor per bit) became standard since the era of 4 kb DRAM in the mid-1970s.[138][139] In single-level flash memory, each cell contains one floating gate transistor (one transistor per bit),[140] whereas multi-level flash contains 2-bit, 3-bit or 4-bit per transistor.

Dynamic random-access memory (DRAM)
Chip name Capacity (bits) DRAM type Transistor count Date of introduction Manufacturer(s) Process Area Ref
N/A 1-bit DRAM (cell) 1 1965 Toshiba N/A N/A [141][142]
? 256-bit DRAM (IC) 256 1968 Fairchild ? ? [139]
1102 1 kb DRAM (PMOS) 768 1970 Intel, Honeywell ? ? [138]
1103 1 kb DRAM (PMOS) 3,072 1970 Intel 8,000 nm 10 mm² [143][137][144]
μPD403 1 kb DRAM (NMOS) 3,072 1971 NEC ? ? [145]
? 2 kb DRAM (PMOS) 6,144 1971 General Instrument ? 13 mm² [146]
? 8 kb DRAM (PMOS) 8,192 1973 IBM ? 19 mm² [146]
2116 16 kb DRAM (NMOS) 16,384 1975 Intel ? ? [147][139]
? 64 kb DRAM (NMOS) 65,536 1977 NTT ? 35 mm² [146]
? 64 kb DRAM (VMOS) 65,536 1979 Siemens ? 25 mm² [146]
? 256 kb DRAM (NMOS) 262,144 1980 NEC, NTT 1,000–1,500 nm 34–42 mm² [146]
? 288 kb DRAM 294,912 1981 IBM ? 25 mm² [148]
? 8 Mb DRAM 8,388,608 January 5, 1984 Hitachi ? ? [149][150]
? 16 Mb DRAM (CMOS) 16,777,216 1987 NTT 700 nm 148 mm² [146]
? 64 Mb DRAM (CMOS) 67,108,864 1991 Matsushita, Mitsubishi, Fujitsu, Toshiba 400 nm ? [151]
KM48SL2000 16 Mb SDRAM 16,777,216 1992 Samsung ? ? [152][153]
? 256 Mb DRAM (CMOS) 268,435,456 1993 Hitachi, NEC 250 nm ? [151]
? 1 Gb DRAM 1,073,741,824 January 9, 1995 NEC 250 nm ? [154][155]
? 1 Gb DRAM 1,073,741,824 January 9, 1995 Hitachi 160 nm ? [154][155]
? 1 Gb SDRAM 1,073,741,824 1996 Mitsubishi 150 nm ? [151]
? 1 Gb SDRAM (SOI) 1,073,741,824 1997 Hyundai ? ? [156]
? 4 Gb DRAM (4-bit) 1,073,741,824 1997 NEC 150 nm ? [151]
? 4 Gb DRAM 4,294,967,296 1998 Hyundai ? ? [156]
? 8 Gb SDRAM (DDR3) 8,589,934,592 April 2008 Samsung 50 nm ? [157]
? 16 Gb SDRAM (DDR3) 17,179,869,184 2008 Samsung 50 nm ?
? 32 Gb SDRAM (HBM2) 34,359,738,368 2016 Samsung 20 nm ? [158]
? 64 Gb SDRAM (HBM2) 68,719,476,736 2017 Samsung 20 nm ?
? 128 Gb SDRAM (DDR4) 137,438,953,472 2018 Samsung 10 nm ? [159]
Static random-access memory (SRAM)
Chip name Capacity (bits) SRAM type Transistor count Date of introduction Manufacturer(s) Process Area Ref
N/A 1-bit Cell 6 1963 Fairchild N/A N/A [160]
? 8-bit Bipolar 48 1965 SDS, Signetics ? ? [160]
SP95 16-bit Bipolar 80 1965 IBM ? ? [161]
TMC3162 16-bit TTL 96 1966 Transitron ? ? [139]
? ? MOS ? 1966 NEC ? ? [138]
? 64-bit PMOS 384 1968 Fairchild ? ? [138]
? 144-bit NMOS 864 1968 NEC ? ? [138]
? 128-bit Bipolar 768 1969 IBM ? ? [160]
1101 256-bit PMOS 1,536 1969 Intel 12,000 nm ? [162][163][164]
2102 1 kb NMOS 6,144 1972 Intel ? ? [162][165]
5101 1 kb CMOS 6,144 1974 Intel ? ? [162]
2114 4 kb NMOS 24,576 1976 Intel ? ? [162][166]
? 4 kb CMOS 24,576 1977 Toshiba ? ? [163]
? 16 kb CMOS 98,304 1980 Hitachi, Toshiba ? ? [151]
? 64 kb CMOS 393,216 1980 Matsushita ? 114 mm² [151]
? 64 kb NMOS 393,216 1982 Intel 1,500 nm 326 mm² [151]
? 256 kb CMOS 1,572,864 1984 Toshiba 1,200 nm 149 mm² [151][164]
? 1 Mb CMOS 6,291,456 1987 Sony, Hitachi, Mitsubishi, Toshiba ? ? [151]
? 4 Mb CMOS 25,165,824 1990 NEC, Toshiba, Hitachi, Mitsubishi ? ? [151]
? 16 Mb CMOS 100,663,296 1992 Fujitsu, NEC 400 nm ? [151]
Flash memory
Chip name Capacity (bits) Flash type Transistor count Date of introduction Manufacturer(s) Process Area Ref
? 256 kb NOR 262,144 1985 Toshiba 2,000 nm ? [151]
? 1 Mb NOR 1,048,576 1989 Seeq, Intel ? ? [151]
? 4 Mb NAND 4,194,304 1989 Toshiba 1,000 nm ? [151]
? 16 Mb NOR 16,777,216 1991 Mitsubishi 600 nm ? [151]
DD28F032SA 32 Mb NOR 33,554,432 1993 Intel ? 280 mm² [162][167]
? 64 Mb NOR 67,108,864 1994 NEC 400 nm ? [151]
? 64 Mb NAND 67,108,864 1996 Hitachi 400 nm ? [151]
? 128 Mb NAND 134,217,728 1996 Samsung, Hitachi ? ? [151]
? 256 Mb NAND 268,435,456 1999 Hitachi, Toshiba 250 nm ? [151]
? 512 Mb NAND 536,870,912 2000 Toshiba ? ? [168]
? 1 Gb 2-bit NAND 536,870,912 2001 Samsung ? ? [151]
? 1 Gb NAND 1,073,741,824 2001 Toshiba, SanDisk 160 nm ? [169]
? 2 Gb NAND 2,147,483,648 2002 Samsung, Toshiba ? ? [170][171]
? 8 Gb NAND 8,589,934,592 2004 Samsung 60 nm ? [170]
? 16 Gb NAND 17,179,869,184 2005 Samsung 50 nm ? [172]
? 32 Gb NAND 34,359,738,368 2006 Samsung 40 nm ? [172]
THGAM 128 Gb Stacked NAND 128,000,000,000 April 2007 Toshiba 56 nm 252 mm² [173]
THGBM 256 Gb Stacked NAND 256,000,000,000 2008 Toshiba 43 nm 353 mm² [174]
THGBM2 1 Tb Stacked 4-bit NAND 256,000,000,000 2010 Toshiba 32 nm 374 mm² [175]
KLMCG8GE4A 512 Gb Stacked 2-bit NAND 256,000,000,000 2011 Samsung ? 192 mm² [176]
KLUFG8R1EM 4 Tb Stacked 3-bit V-NAND 1,365,333,333,504 2017 Samsung ? 150 mm² [177]
eUFS (1 TB) 8 Tb Stacked 4-bit V-NAND 2,048,000,000,000 2019 Samsung ? 150 mm² [3][4]
Read-only memory (ROM)
Chip name Capacity (bits) ROM type Transistor count Date of introduction Manufacturer(s) Process Area Ref
? ? PROM ? 1956 Arma ? ? [178][179]
? 1 kb ROM (MOS) 1,024 1965 General Microelectronics ? ? [180]
3301 1 kb ROM (bipolar) 1,024 1969 Intel ? ? [180]
1702 2 kb EPROM 2,048 1971 Intel ? 15 mm² [181]
? 4 kb ROM 4,096 1974 AMD, General Instrument ? ? [180]
2708 8 kb EPROM 8,192 1975 Intel ? ? [162]
? 2 kb EEPROM 2,048 1976 Toshiba ? ? [182]
µCOM-43 ROM 16 kb PROM 16,000 1977 NEC ? ? [183]
2716 16 kb EPROM (TTL) 16,384 1977 Intel ? ? [143][184]
EA8316F 16 kb ROM (NMOS) 16,384 1978 Electronic Arrays ? 436 mm² [180][185]
2732 32 kb EPROM 32,768 1978 Intel ? ? [162]
2364 64 kb ROM 65,536 1978 Intel ? ? [186]
2764 64 kb EPROM 65,536 1981 Intel 3,500 nm ? [162][151]
27128 128 kb EPROM 131,072 1982 Intel ? ? [162][151]
27256 256 kb EPROM (HMOS) 262,144 1983 Intel ? ? [162][187]
? 256 kb EPROM (CMOS) 262,144 1983 Fujitsu ? ? [188]
? 512 kb EPROM (NMOS) 524,288 1984 AMD 1,700 nm ? [151]
27512 512 kb EPROM (HMOS) 524,288 1984 Intel ? ? [162][189]
? 1 Mb EPROM (CMOS) 1,048,576 1984 NEC 1,200 nm ? [151]
? 4 Mb EPROM (CMOS) 4,194,304 1987 Toshiba 800 nm ? [151]
? 16 Mb EPROM (CMOS) 16,777,216 1990 NEC 600 nm ? [151]
? 16 Mb MROM 16,777,216 1995 AKM, Hitachi ? ? [155]

Semiconductor nodesEdit

Semiconductor nodes
Node name Transistor density (transistors/mm2) Production year Process MOSFET Manufacturer(s) Ref
? ? 1968 20,000 nm CMOS RCA [190]
? ? 1969 12,000 nm PMOS Intel [151][164]
? ? 1970 10,000 nm CMOS RCA [190]
? ? 1970 8,000 nm PMOS Intel [144]
? ? 1971 10,000 nm PMOS Intel [191]
? ? 1973 ? NMOS Mostek, Texas Instruments [146]
? ? 1973 7,500 nm NMOS NEC [8][7]
? ? 1973 6,000 nm PMOS Toshiba [9][192]
? ? 1976 5,000 nm NMOS Hitachi, Intel [146]
? ? 1976 5,000 nm CMOS RCA
? ? 1976 4,000 nm NMOS Zilog
? ? 1976 3,000 nm NMOS Intel [193]
? ? 1978 3,000 nm CMOS Hitachi [194]
? ? 1978 2,500 nm NMOS Texas Instruments [146]
? ? 1978 2,000 nm NMOS NEC, NTT [146]
? ? 1979 1,000 nm NMOS NTT [146]
? ? 1983 2,000 nm CMOS Toshiba [151]
? ? 1983 1,500 nm CMOS Intel [146]
? ? 1983 1,200 nm CMOS Intel [151]
? ? 1984 800 nm CMOS NTT [146]
? ? 1987 700 nm CMOS Fujitsu [146]
? ? 1989 600 nm CMOS Mitsubishi, NEC, Toshiba [151]
? ? 1989 500 nm CMOS Hitachi, Mitsubishi, NEC, Toshiba
? ? 1991 400 nm CMOS Matsushita, Mitsubishi, Fujitsu, Toshiba
? ? 1993 350 nm CMOS Sony
? ? 1993 250 nm CMOS Hitachi, NEC
? ? 1995 160 nm CMOS Hitachi
? ? 1996 150 nm CMOS Mitsubishi
TSMC 180 nm ? 1998 180 nm CMOS TSMC [195]
CS80 ? 1999 180 nm CMOS Fujitsu [196]
? ? 1999 180 nm CMOS Intel, Sony, Toshiba [162][39]
CS85 ? 1999 170 nm CMOS Fujitsu [197]
Samsung 140 nm ? 1999 140 nm CMOS Samsung [151]
? ? 2001 130 nm CMOS Fujitsu, Intel [196][162]
Samsung 100 nm ? 2001 100 nm CMOS Samsung [151]
? ? 2002 90 nm CMOS Sony, Toshiba, Samsung [39][170]
CS100 ? 2003 90 nm CMOS Fujitsu [196]
Intel 90 nm 1,450,000 2004 90 nm CMOS Intel [198][162]
Samsung 80 nm ? 2004 80 nm CMOS Samsung [199]
? ? 2004 65 nm CMOS Fujitsu, Toshiba [200]
Samsung 60 nm ? 2004 60 nm CMOS Samsung [170]
TSMC 45 nm ? 2004 45 nm CMOS TSMC
Elpida 90 nm ? 2005 90 nm CMOS Elpida Memory [201]
CS200 ? 2005 65 nm CMOS Fujitsu [202][196]
Samsung 50 nm ? 2005 50 nm CMOS Samsung [172]
Intel 65 nm 2,080,000 2006 65 nm CMOS Intel [198]
Samsung 40 nm ? 2006 40 nm CMOS Samsung [172]
Toshiba 56 nm ? 2007 56 nm CMOS Toshiba [203]
Matsushita 45 nm ? 2007 45 nm CMOS Matsushita [47]
Intel 45 nm 3,300,000 2008 45 nm CMOS Intel [204]
Toshiba 43 nm ? 2008 43 nm CMOS Toshiba [205]
TSMC 40 nm ? 2008 40 nm CMOS TSMC [206]
Toshiba 32 nm ? 2009 32 nm CMOS Toshiba [207]
Intel 32 nm 7,500,000 2010 32 nm CMOS Intel [204]
? ? 2010 20 nm CMOS Hynix, Samsung [208][172]
Intel 22 nm 15,300,000 2012 22 nm CMOS Intel [204]
IMFT 20 nm ? 2012 20 nm CMOS IMFT [209]
Toshiba 19 nm ? 2012 19 nm CMOS Toshiba
Hynix 16 nm ? 2013 16 nm FinFET SK Hynix [210]
TSMC 16 nm 28,880,000 2013 16 nm FinFET TSMC [211][212]
Samsung 10 nm 51,820,000 2013 10 nm FinFET Samsung [213][214]
Intel 14 nm 37,500,000 2014 14 nm FinFET Intel [204]
14LP 32,940,000 2015 14 nm FinFET Samsung [213]
TSMC 10 nm 52,510,000 2016 10 nm FinFET TSMC [211][215]
12LP 36,710,000 2017 12 nm FinFET GlobalFoundries, Samsung [216]
N7FF 96,490,000 2017 7 nm FinFET TSMC [217][218]
8LPP 61,180,000 2018 8 nm FinFET Samsung [213]
7LPE 95,300,000 2018 7 nm FinFET Samsung [217]
Intel 10 nm 100,760,000 2018 10 nm FinFET Intel [219]
5LPE 126,530,000 2018 5 nm FinFET Samsung [220][221]
N7FF+ 113,880,000 2019 7 nm FinFET TSMC [217]
CLN5FF 171,300,000 2019 5 nm FinFET TSMC [5]
TSMC 3 nm ? ? 3 nm FinFET TSMC
Samsung 3 nm ? ? 3 nm FinFET Samsung

Transistorized computersEdit

The "second generation" of computers (transistor computers) featured boards filled with discrete transistors and magnetic memory cores.

The third generation of computers used integrated circuits (ICs), starting with the IBM System/360 in 1964.[222] The next generation were then microcomputers, which used microprocessors, in the 1970s. This list includes early transistorized computers and IC-based computers from the 1950s and 1960s.

Computer Transistor count Year Manufacturer Notes Ref
Transistor Computer 92 1953 University of Manchester Point-contact transistors [223]
TRADIC 700 1954 Bell Labs Point-contact transistors [223]
Transistor Computer (full size) 250 1955 University of Manchester Discrete point-contact transistors [223]
ETL Mark III 130 1956 Electrotechnical Laboratory Point-contact transistors [223][224]
Metrovick 950 200 1956 Metropolitan-Vickers Discrete junction transistors
NEC NEAC-2201 600 1958 NEC Germanium transistors [225]
Hitachi MARS-1 1,000 1958 Hitachi [226]
IBM 7070 30,000 1958 IBM Alloy-junction germanium transistors [227]
Matsushita MADIC-I 400 1959 Matsushita Bipolar transistors [228]
NEC NEAC-2203 2,579 1959 NEC [229]
Toshiba TOSBAC-2100 5,000 1959 Toshiba [230]
IBM 7090 50,000 1959 IBM Discrete germanium transistors [231]
PDP-1 2,700 1959 Digital Equipment Corporation Discrete transistors
Mitsubishi MELCOM 1101 3,500 1960 Mitsubishi Germanium transistors [232]
M18 FADAC 1,600 1960 Autonetics Discrete transistors
D-17B 1,521 1962 Autonetics Discrete transistors
NEC NEAC-L2 16,000 1964 NEC Ge transistors [233]
IBM System/360 ? 1964 IBM Integrated circuits
PDP-8/I ? 1968 Digital Equipment Corporation 74 series TTL circuits
Apollo Guidance Computer Block II 12,300 1966 Raytheon / MIT Instrumentation Laboratory 4,100 ICs, each containing a 3-transistor, 3-input NOR gate

Logic functionsEdit

Transistor count for generic logic functions is based on static CMOS implementation.[234]

Function Transistor count Ref
NOT 2
Buffer 4
NAND 2-input 4
NOR 2-input 4
AND 2-input 6
OR 2-input 6
NAND 3-input 6
NOR 3-input 6
XOR 2-input 6
XNOR 2-input 8
MUX 2-input with TG 6
MUX 4-input with TG 18
NOT MUX 2-input 8
MUX 4-input 24
1-bit adder full 28
1-bit adder–subtractor 48
AND-OR-INVERT 6 [235]
Latch, D gated 8
Flip-flop, edge triggered dynamic D with reset 12
8-bit multiplier 3,000
16-bit multiplier 9,000
32-bit multiplier 21,000 [236]
small-scale integration 2–100 [237]
medium-scale integration 100–500 [237]
large-scale integration 500–20,000 [237]
very-large-scale integration 20,000–1,000,000 [237]
ultra-large scale integration >1,000,000

Parallel systemsEdit

Historically, each processing element in earlier parallel systems—like all CPUs of that time—was a serial computer built out of multiple chips. As transistor counts per chip increases, each processing element could be built out of fewer chips, and then later each multi-core processor chip could contain more processing elements.[238]

Goodyear MPP : (1983?) 8 pixel processors per chip, 3,000 to 8,000 transistors per chip.[238]

Brunel University Scape (single-chip array-processing element): (1983) 256 pixel processors per chip, 120,000 to 140,000 transistors per chip.[238]

Cell Broadband Engine: (2006) 9 cores per chip, 234 million transistors per chip.[239]

See alsoEdit

ReferencesEdit

  1. ^ "Xilinx Unveils Revolutionary Adaptable Computing Product Category". www.xilinx.com. Retrieved May 2, 2018.
  2. ^ Cutress, Ian. "Xilinx Announces Project Everest: The 7nm FPGA SoC Hybrid". Retrieved May 2, 2018.
  3. ^ a b Manners, David (January 30, 2019). "Samsung makes 1TB flash eUFS module". Electronics Weekly. Retrieved June 23, 2019.
  4. ^ a b Tallis, Billy (October 17, 2018). "Samsung Shares SSD Roadmap for QLC NAND And 96-layer 3D NAND". AnandTech. Retrieved June 27, 2019.
  5. ^ a b Schor, David (April 6, 2019). "TSMC Starts 5-Nanometer Risk Production". WikiChip Fuse. Retrieved April 7, 2019.
  6. ^ Ryoichi Mori; Hiroaki Tajima; Morihiko Tajima; Yoshikuni Okada (October 1977). "Microprocessors in Japan". Euromicro Newsletter. 3 (4): 50–7. doi:10.1016/0303-1268(77)90111-0.
  7. ^ a b "NEC 751 (uCOM-4)". The Antique Chip Collector's Page. Archived from the original on May 25, 2011. Retrieved June 11, 2010.
  8. ^ a b "1970s: Development and evolution of microprocessors" (PDF). Semiconductor History Museum of Japan. Retrieved June 27, 2019.
  9. ^ a b "1973: 12-bit engine-control microprocessor (Toshiba)" (PDF). Semiconductor History Museum of Japan. Retrieved June 27, 2019.
  10. ^ "Texas Instruments - Low Bandwidth Timeline - Semiconductor". www.ti.com. Retrieved June 22, 2016.
  11. ^ "The MOS 6502 and the Best Layout Guy in the World". swtch.com. Retrieved August 9, 2014.
  12. ^ "Digital History: ZILOG Z8000 (APRIL 1979)". OLD-COMPUTERS.COM : The Museum. Retrieved June 19, 2019.
  13. ^ "Chip Hall of Fame: Motorola MC68000 Microprocessor". IEEE Spectrum. Institute of Electrical and Electronics Engineers. June 30, 2017. Retrieved June 19, 2019.
  14. ^ Microprocessors: 1971 to 1976 Christiansen
  15. ^ "Microprocessors 1976 to 1981". weber.edu. Retrieved August 9, 2014.
  16. ^ "W65C816S 16-bit Core". www.westerndesigncenter.com. Retrieved September 12, 2017.
  17. ^ a b c d e Demone, Paul (November 9, 2000). "ARM's Race to World Domination". real world technologies. Retrieved July 20, 2015.
  18. ^ Hand, Tom. "The Harris RTX 2000 Microcontroller" (PDF). mpeforth.com. Retrieved August 9, 2014.
  19. ^ "Forth chips list". UltraTechnology. March 15, 2001. Retrieved August 9, 2014.
  20. ^ Koopman, Philip J. (1989). "4.4 Architecture of the Novix NC4016". Stack Computers: the new wave. Ellis Horwood Series in Computers and Their Applications. Carnegie Mellon University. ISBN 978-0745804187. Retrieved August 9, 2014.
  21. ^ "Fujitsu SPARC". cpu-collection.de. Retrieved June 30, 2019.
  22. ^ a b Kimura S, Komoto Y, Yano Y (1988). "Implementation of the V60/V70 and its FRM function". IEEE Micro. 8 (2): 22–36. doi:10.1109/40.527.
  23. ^ Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K (1988). "Realization of Gmicro/200". IEEE Micro. 8 (2): 12–21. doi:10.1109/40.526.
  24. ^ Bosshart, P.; Hewes, C.; Mi-Chang Chang; Kwok-Kit Chau; Hoac, C.; Houston, T.; Kalyan, V.; Lusky, S.; Mahant-Shetti, S.; Matzke, D.; Ruparel, K.; Ching-Hao Shaw; Sridhar, T.; Stark, D. (October 1987). "A 553K-Transistor LISP Processor Chip". IEEE Journal of Solid-State Circuits. sc-22 (5): 202–3. doi:10.1109/ISSCC.1987.1157084.
  25. ^ Fahlén, Lennart E.; Stockholm International Peace Research Institute (1987). "3. Hardware requirements for artificial intelligence § Lisp Machines: TI Explorer". Arms and Artificial Intelligence: Weapon and Arms Control Applications of Advanced Computing. SIPRI Monograph Series. Oxford University Press. p. 57. ISBN 978-0-19-829122-0.
  26. ^ Jouppi, Norman P.; Tang, Jeffrey Y. F. (July 1989). "A 20-MIPS Sustained 32-bit CMOS Microprocessor with High Ratio of Sustained to Peak Performance". IEEE Journal of Solid-State Circuits. 24 (5): i. Bibcode:1989IJSSC..24.1348J. CiteSeerX 10.1.1.85.988. doi:10.1109/JSSC.1989.572612. WRL Research Report 89/11.
  27. ^ "The CPU shack museum". CPUshack.com. May 15, 2005. Retrieved August 9, 2014.
  28. ^ a b c "Intel i960 Embedded Microprocessor". National High Magnetic Field Laboratory. Florida State University. March 3, 2003. Retrieved June 29, 2019.
  29. ^ Venkatasawmy, Rama (2013). The Digitization of Cinematic Visual Effects: Hollywood's Coming of Age. Rowman & Littlefield. p. 198. ISBN 9780739176214.
  30. ^ "SH Microprocessor Leading the Nomadic Era" (PDF). Semiconductor History Museum of Japan. Retrieved June 27, 2019.
  31. ^ "SH2: A Low Power RISC Micro for Consumer Applications" (PDF). Hitachi. Retrieved June 27, 2019.
  32. ^ "HARP-1: A 120 MHz Superscalar PA-RISC Processor" (PDF). Hitachi. Retrieved June 19, 2019.
  33. ^ "ARM7 Statistics". Poppyfields.net. May 27, 1994. Retrieved August 9, 2014.
  34. ^ "PC Guide Intel Pentium Pro ("P6")". PCGuide.com. April 17, 2001. Retrieved August 9, 2014.[dead link]
  35. ^ a b "Remembering the Sega Dreamcast". Bit-Tech. September 29, 2009. Retrieved June 18, 2019.
  36. ^ "Entertainment Systems and High-Performance Processor SH-4" (PDF). Hitachi Review. Hitachi. 48 (2): 58–63. 1999. Retrieved June 27, 2019.
  37. ^ a b Hagiwara, Shiro; Oliver, Ian (November – December 1999). "Sega Dreamcast: Creating a Unified Entertainment World". IEEE Micro. IEEE Computer Society. 19 (6): 29–35. doi:10.1109/40.809375. Retrieved June 27, 2019.
  38. ^ a b Hennessy, John L.; Patterson, David A. (May 29, 2002). Computer Architecture: A Quantitative Approach (3 ed.). Morgan Kaufmann. p. 491. ISBN 978-0-08-050252-6. Retrieved April 9, 2013.
  39. ^ a b c d "EMOTION ENGINE® AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION® BECOME ONE CHIP" (PDF). Sony. April 21, 2003. Retrieved June 26, 2019.
  40. ^ a b Diefendorff, Keith (April 19, 1999). "Sony's Emotionally Charged Chip: Killer Floating-Point "Emotion Engine" To Power PlayStation 2000" (PDF). Microprocessor Report. 13 (5). Retrieved June 19, 2019.
  41. ^ a b c d "NVIDIA GeForce 7800 GTX GPU Review". PC Perspective. June 22, 2005. Retrieved June 18, 2019.
  42. ^ Ando, H.; Yoshida, Y.; Inoue, A.; Sugiyama, I.; Asakawa, T.; Morita, K.; Muta, T.; otokurumada, T.; Okada, S.; Yamashita, H.; Satsukawa, Y.; Konmoto, A.; Yamashita, R.; Sugiyama, H. (2003). A 1.3GHz fifth eneration SPARC64 microprocessor. Design Automation Conference. pp. 702–705. doi:10.1145/775832.776010. ISBN 1-58113-688-9.
  43. ^ Krewell, Kevin (21 October 2002). "Fujitsu's SPARC64 V Is Real Deal". Microprocessor Report.
  44. ^ Fujitsu Limited (August 2004). SPARC64 V Processor For UNIX Server.
  45. ^ "SPARC64 VI Extensions" page 56, Fujitsu Limited, Release 1.3, 27 March 2007
  46. ^ "A Glimpse Inside The Cell Processor". Gamasutra. July 13, 2006. Retrieved June 19, 2019.
  47. ^ a b "Panasonic starts to sell a New-generation UniPhier System LSI". Panasonic. October 10, 2007. Retrieved July 2, 2019.
  48. ^ Morgan, Timothy Prickett (17 July 2008). "Fujitsu and Sun Flex Their Quads with New Sparc Server Lineup". The Unix Guardian, Vol. 8, No. 27.
  49. ^ Takumi Maruyama (2009). SPARC64 VIIIfx: Fujitsu's New Generation Octo Core Processor for PETA Scale computing (PDF). Proceedings of Hot Chips 21. IEEE Computer Society. Archived from the original (PDF) on October 8, 2010. Retrieved June 30, 2019.
  50. ^ Morgan, Timothy Prickett (November 21, 2011), "Fujitsu parades 16-core Sparc64 super stunner", The Register, retrieved December 8, 2011
  51. ^ "IDF2012 Mark Bohr, Intel Senior Fellow" (PDF).
  52. ^ a b Toepelt, Bert (January 8, 2009). "AMD Phenom II X4: 45nm Benchmarked — The Phenom II And AMD's Dragon Platform". TomsHardware.com. Retrieved August 9, 2014.
  53. ^ "ARM (Advanced RISC Machines) Processors". EngineersGarage.com. Retrieved August 9, 2014.
  54. ^ Stokes, Jon (February 10, 2010). "Sun's 1 billion-transistor, 16-core Niagara 3 processor". ArsTechnica.com. Retrieved August 9, 2014.
  55. ^ "Images of SPARC64" (PDF). fujitsu.com. Retrieved August 29, 2017.
  56. ^ "Intel's Atom Architecture: The Journey Begins". AnandTech. Retrieved April 4, 2010.
  57. ^ "IBM to Ship World's Fastest Microprocessor". IBM. September 1, 2010. Retrieved August 9, 2014.
  58. ^ Shimpi, Lal. "The Haswell Review: Intel Core i7-4770K & i5-4670K Tested". anandtech. Retrieved November 20, 2014.
  59. ^ "PRESS KIT — Dual-core Intel Itanium Processor". Intel. Retrieved August 9, 2014.
  60. ^ "Intel's Broadwell-U arrives aboard 15W, 28W mobile processors". TechReport. Retrieved January 5, 2015.
  61. ^ "Itanium Tukwila Archived May 20, 2011, at the Wayback Machine." AFP. February 5, 2008. Retrieved on February 5, 2008.
  62. ^ Angelini, Chris (November 14, 2011). "Intel Core i7-3960X Review: Sandy Bridge-E And X79 Express". TomsHardware.com. Retrieved August 9, 2014.
  63. ^ "Intel Previews Intel Xeon 'Nehalem-EX' Processor." May 26, 2009. Retrieved on May 28, 2009.
  64. ^ "Dimmick, Frank (August 29, 2014). "Intel Core i7 5960X Extreme Edition Review". Overclockers Club. Retrieved August 29, 2014.
  65. ^ "Apple A8X". NotebookCheck. Retrieved July 20, 2015.
  66. ^ "Qualcomm Snapdragon 835 (8998)". NotebookCheck. Retrieved September 23, 2017.
  67. ^ Takahashi, Dean (January 3, 2017). "Qualcomm's Snapdragon 835 will debut with 3 billion transistors and a 10nm manufacturing process". VentureBeat.
  68. ^ "Qualcomm Snapdragon 1000 for laptops could pack 8.5 billion transistors". techradar. Retrieved September 23, 2017.
  69. ^ "Spotted: Qualcomm Snapdragon 8cx Wafer on 7nm". AnandTech. Retrieved December 6, 2018.
  70. ^ "Qualcomm Snapdragon 8180: 7nm SoC SDM1000 With 8.5 Billion Transistors To Challenge Apple A12 Bionic Chipset". dailyhunt. Retrieved September 21, 2018.
  71. ^ "Broadwell-E: Intel Core i7-6950X, 6900K, 6850K & 6800K Review". Tom's Hardware. May 30, 2016. Retrieved April 12, 2017.
  72. ^ "The Broadwell-E Review". PC Gamer. July 8, 2016. Retrieved April 12, 2017.
  73. ^ "Intel Readying 15-core Xeon E7 v2". AnandTech. Retrieved August 9, 2014.
  74. ^ Cutress, Ian (February 22, 2017). "AMD Launches Zen". Anandtech.com. Retrieved February 22, 2017.
  75. ^ "Ryzen 5 1600 - AMD". Wikichip.org. April 20, 2018. Retrieved December 9, 2018.
  76. ^ "Ryzen 5 1600X - AMD". Wikichip.org. October 26, 2018. Retrieved December 9, 2018.
  77. ^ "Intel Xeon Phi SE10X". TechPowerUp. Retrieved July 20, 2015.
  78. ^ "Intel Xeon E5-2600 v3 Processor Overview: Haswell-EP Up to 18 Cores". pcper. Retrieved January 29, 2015.
  79. ^ Yang, Daniel; Wegner, Stacy (September 21, 2018). "Apple iPhone Xs Max Teardown". TechInsights. Retrieved September 21, 2018.
  80. ^ "Apple's A12 Bionic is the first 7-nanometer smartphone chip". Engadget. Retrieved September 26, 2018.
  81. ^ "HUAWEI TO UNVEIL KIRIN 970 SOC WITH AI UNIT, 5.5 BILLION TRANSISTORS AND 1.2 GBPS LTE SPEED AT IFA 2017". firstpost.com. September 1, 2017. Retrieved November 18, 2018.
  82. ^ "Kirin 980 - HiSilicon". Wikichip. November 8, 2018. Retrieved November 8, 2018.
  83. ^ "Kirin 970 - HiSilicon". Wikichip. March 1, 2018. Retrieved November 8, 2018.
  84. ^ "HiSilicon Kirin 710". Notebookcheck. September 19, 2018. Retrieved November 24, 2018.
  85. ^ a b Leadbetter, Richard (April 6, 2017). "Inside the next Xbox: Project Scorpio tech revealed". Eurogamer. Retrieved May 3, 2017.
  86. ^ "Intel Xeon Platinum 8180". TechPowerUp. December 1, 2018. Retrieved December 2, 2018.
  87. ^ "Broadwell-EP Architecture - Intel Xeon E5-2600 v4 Broadwell-EP Review". Tom's Hardware. March 31, 2016. Retrieved April 4, 2016.
  88. ^ Lee, Y. "SiFive Freedom SoCs : Industry's First Open Source RISC V Chips" (PDF). HotChips 29 IOT/Embedded.
  89. ^ http://www.enterprisetech.com/2014/08/13/oracle-cranks-cores-32-sparc-m7-chip/
  90. ^ "Documents at Fujitsu" (PDF). fujitsu.com. Retrieved August 29, 2017.
  91. ^ Zafar, Ramish (October 30, 2018). "Apple's A12X Has 10 Billion Transistors, 90% Performance Boost & 7-Core GPU". Wccftech.
  92. ^ Schmerer, Kai (November 5, 2018). "iPad Pro 2018: A12X-Prozessor bietet deutlich mehr Leistung". ZDNet.de (in German).
  93. ^ "Qualcomm Datacenter Technologies Announces Commercial Shipment of Qualcomm Centriq 2400 – The World's First 10nm Server Processor and Highest Performance Arm-based Server Processor Family Ever Designed". Qualcomm. Retrieved November 9, 2017.
  94. ^ "Fujitsu began to produce Japan's billions of super-calculations with the strongest ARM processor A64FX". firstxw.com. April 16, 2019. Retrieved June 19, 2019.
  95. ^ "Fujitsu Successfully Triples the Power Output of Gallium-Nitride Transistors". Fujitsu. August 22, 2018. Retrieved June 19, 2019.
  96. ^ "Hot Chips 30: Nvidia Xavier SoC". fuse.wikichip.org. September 18, 2018. Retrieved December 6, 2018.
  97. ^ "Famous Graphics Chips: NEC µPD7220 Graphics Display Controller". IEEE Computer Society. Institute of Electrical and Electronics Engineers. August 22, 2018. Retrieved June 21, 2019.
  98. ^ "GPU History: Hitachi ARTC HD63484. The second graphics processor". IEEE Computer Society. Institute of Electrical and Electronics Engineers. Retrieved June 21, 2019.
  99. ^ a b "30 Years of Console Gaming". Klinger Photography. August 20, 2017. Retrieved June 19, 2019.
  100. ^ a b "Diamond Edge 3D (nVidia NV1+Sega Saturn)". Naver. February 24, 2017. Retrieved June 19, 2019.
  101. ^ "ASIC CHIPS ARE INDUSTRY'S GAME WINNERS". The Washington Post. September 18, 1995. Retrieved June 19, 2019.
  102. ^ "Is it Time to Rename the GPU?". Jon Peddie Research. IEEE Computer Society. July 9, 2018. Retrieved June 19, 2019.
  103. ^ "Reality Co-Processor − The Power In Nintendo64" (PDF). Silicon Graphics. Retrieved June 18, 2019.
  104. ^ "Imagination PowerVR PCX2 GPU". VideoCardz.net. Retrieved June 19, 2019.
  105. ^ a b c d e f g h i j Lilly, Paul (May 19, 2009). "From Voodoo to GeForce: The Awesome History of 3D Graphics". PC Gamer. Retrieved June 19, 2019.
  106. ^ Weinberg, Neil (September 7, 1998). "Comeback kid". Forbes. Retrieved June 19, 2019.
  107. ^ Charles, Bertie (1998). "Sega's New Dimension". Forbes. Forbes Incorporated. 162 (5–9): 206. The chip, etched in 0.25-micron detail — state-of-the-art for graphics processors — fits 10 million transistors
  108. ^ "VideoLogic Neon 250 4MB". VideoCardz.net. Retrieved June 19, 2019.
  109. ^ Shimpi, Anand Lal (November 21, 1998). "Fall Comdex '98 Coverage". AnandTech. Retrieved June 19, 2019.
  110. ^ "NVIDIA NV10 A3 GPU Specs". TechPowerUp. Retrieved June 19, 2019.
  111. ^ IGN Staff (November 4, 2000). "Gamecube Versus PlayStation 2". IGN. Retrieved November 22, 2015.
  112. ^ "ATI Xenos GPU Specs". TechPowerUp. Retrieved June 21, 2019.
  113. ^ "NVIDIA Playstation 3 RSX 65nm Specs". TechPowerUp. Retrieved June 21, 2019.
  114. ^ "PS3 Graphics Chip Goes 65nm in Fall". Edge Online. June 26, 2008.
  115. ^ "The Radeon HD 4850 & 4870: AMD Wins at $199 and $299". AnandTech.com. Retrieved August 9, 2014.
  116. ^ "NVIDIA's 1.4 Billion Transistor GPU: GT200 Arrives as the GeForce GTX 280 & 260". AnandTech.com. Retrieved August 9, 2014.
  117. ^ "Radeon 5870 specifications". AMD. Retrieved August 9, 2014.
  118. ^ a b Glaskowsky, Peter. "ATI and Nvidia face off-obliquely". CNET. Retrieved August 9, 2014.[dead link]
  119. ^ "Whitepaper: NVIDIA GeForce GTX 680" (PDF). NVIDIA. 2012. Archived from the original (PDF) on April 17, 2012.
  120. ^ Woligroski, Don (December 22, 2011). "AMD Radeon HD 7970". TomsHardware.com. Retrieved August 9, 2014.
  121. ^ Smith, Ryan (June 29, 2016). "The AMD RX 480 Preview". Anandtech.com. Retrieved February 22, 2017.
  122. ^ http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
  123. ^ Smith, Ryan (November 12, 2012). "NVIDIA Launches Tesla K20 & K20X: GK110 Arrives At Last". AnandTech.
  124. ^ "Radeon's next-generation Vega architecture" (PDF).
  125. ^ Harris, Mark (April 5, 2016). "Inside Pascal: NVIDIA's Newest Computing Platform". Nvidia developer blog.
  126. ^ "NVIDIA TURING GPU ARCHITECTURE: Graphics Reinvented" (PDF). Nvidia. 2018. Retrieved June 28, 2019.
  127. ^ Durant, Luke; Giroux, Olivier; Harris, Mark; Stam, Nick (May 10, 2017). "Inside Volta: The World's Most Advanced Data Center GPU". Nvidia developer blog.
  128. ^ "Taiwan Company UMC Delivers 65nm FPGAs to Xilinx." SDA-ASIA Thursday, November 9, 2006.
  129. ^ ""Altera's new 40nm FPGAs — 2.5 billion transistors!". pldesignline.com.
  130. ^ "Altera unveils 28-nm Stratix V FPGA family". April 20, 2010. Retrieved April 20, 2010.
  131. ^ "Design of a High-Density SoC FPGA at 20nm" (PDF). 2014. Retrieved July 16, 2017.
  132. ^ "Xilinx Announces world’s highest capacity FPGA." October 25, 2011. Retrieved on October 25, 2011.
  133. ^ Greenhill, David; Ho, Ron; Lewis, David; Schmit, Herman; Chan, Kok Hong; Tong, Andy; Atsatt, Sean; How, Dana; McElheny, Peter; Duwel, Keith; Schulz, Jeffrey; Faulkner, Darren; Iyer, Gopal; Chen, George; Phoon, Hee Kong; Lim, Han Wooi; Koay, Wei-Yee; Garibay, Ty (2017). "3.3 a 14nm 1GHz FPGA with 2.5D transceiver integration". 2017 IEEE International Solid-State Circuits Conference (ISSCC). pp. 54–55. doi:10.1109/ISSCC.2017.7870257. ISBN 978-1-5090-3758-2.
  134. ^ Santarini, Mike (May 2014). "Xilinx Ships Industry's First 20-nm All Programmable Devices" (PDF). Xcell journal. No. 86. Xilinx. p. 14. Retrieved June 3, 2014.
  135. ^ "Xilinx Unveils Revolutionary Adaptable Computing Product Category". www.xilinx.com. Retrieved May 2, 2018.
  136. ^ Cutress, Ian. "Xilinx Announces Project Everest: The 7nm FPGA SoC Hybrid". Retrieved May 2, 2018.
  137. ^ a b The DRAM memory of Robert Dennard history-computer.com
  138. ^ a b c d e "Late 1960s: Beginnings of MOS memory" (PDF). Semiconductor History Museum of Japan. January 23, 2019. Retrieved June 27, 2019.
  139. ^ a b c d "1970: Semiconductors compete with magnetic cores". Computer History Museum. Retrieved June 19, 2019.
  140. ^ "2.1.1 Flash Memory". TU Wien. Retrieved June 20, 2019.
  141. ^ "Spec Sheet for Toshiba "TOSCAL" BC-1411". Old Calculator Web Museum. Archived from the original on July 3, 2017. Retrieved May 8, 2018.
  142. ^ Toshiba "Toscal" BC-1411 Desktop Calculator, Old Calculator Web Museum Archived 2007-05-20 at the Wayback Machine
  143. ^ a b "Intel: 35 Years of Innovation (1968–2003)" (PDF). Intel. 2003. Retrieved June 26, 2019.
  144. ^ a b Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 362–363. ISBN 9783540342588. The i1103 was manufactured on a 6-mask silicon-gate P-MOS process with 8 μm minimum features. The resulting product had a 2,400 µm, 2 memory cell size, a die size just under 10 mm², and sold for around $21.
  145. ^ "Manufacturers in Japan enter the DRAM market and integration densities are improved" (PDF). Semiconductor History Museum of Japan. Retrieved June 27, 2019.
  146. ^ a b c d e f g h i j k l m n Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). CORE. Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019.
  147. ^ "One of the Most Successful 16K Dynamic RAMs: The 4116". National Museum of American History. Smithsonian Institution. Retrieved June 20, 2019.
  148. ^ "The Cutting Edge of IC Technology: The First 294,912-Bit (288K) Dynamic RAM". National Museum of American History. Smithsonian Institution. Retrieved June 20, 2019.
  149. ^ "Computer History for 1984". Computer Hope. Retrieved June 25, 2019.
  150. ^ "Japanese Technical Abstracts". Japanese Technical Abstracts. University Microfilms. 2 (3–4): 161. 1987. The announcement of 1M DRAM in 1984 began the era of megabytes.
  151. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af "Memory". STOL (Semiconductor Technology Online). Retrieved June 25, 2019.
  152. ^ "KM48SL2000-7 Datasheet". Samsung. August 1992. Retrieved June 19, 2019.
  153. ^ "Electronic Design". Electronic Design. Hayden Publishing Company. 41 (15–21). 1993. The first commercial synchronous DRAM, the Samsung 16-Mbit KM48SL2000, employs a single-bank architecture that lets system designers easily transition from asynchronous to synchronous systems.
  154. ^ a b Breaking the gigabit barrier, DRAMs at ISSCC portend major system-design impact. (dynamic random access memory; International Solid-State Circuits Conference; Hitachi Ltd. and NEC Corp. research and development) Highbeam Business, January 9, 1995
  155. ^ a b c "Japanese Company Profiles" (PDF). Smithsonian Institution. 1996. Retrieved June 27, 2019.
  156. ^ a b "History: 1990s". SK Hynix. Retrieved July 6, 2019.
  157. ^ "Samsung 50nm 2GB DDR3 chips are industry's smallest". SlashGear. September 29, 2008. Retrieved June 25, 2019.
  158. ^ Shilov, Anton (July 19, 2017). "Samsung Increases Production Volumes of 8 GB HBM2 Chips Due to Growing Demand". AnandTech. Retrieved June 29, 2019.
  159. ^ "Samsung Unleashes a Roomy DDR4 256GB RAM". Tom's Hardware. September 6, 2018. Retrieved June 21, 2019.
  160. ^ a b c "1966: Semiconductor RAMs Serve High-speed Storage Needs". Computer History Museum. Retrieved June 19, 2019.
  161. ^ "IBM first in IC memory". Computer History Museum. Retrieved June 19, 2019.
  162. ^ a b c d e f g h i j k l m n "A chronological list of Intel products. The products are sorted by date" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007.
  163. ^ a b "1970s: SRAM evolution" (PDF). Semiconductor History Museum of Japan. Retrieved June 27, 2019.
  164. ^ a b c Pimbley, J. (2012). Advanced CMOS Process Technology. Elsevier. p. 7. ISBN 9780323156806.
  165. ^ "Silicon Gate MOS 2102A". Intel. Retrieved June 27, 2019.
  166. ^ Component Data Catalog (PDF). Intel. 1978. p. 3–94. Retrieved June 27, 2019.
  167. ^ "DD28F032SA Datasheet". Intel. Retrieved June 27, 2019.
  168. ^ "TOSHIBA ANNOUNCES 0.13 MICRON 1Gb MONOLITHIC NAND FEATURING LARGE BLOCK SIZE FOR IMPROVED WRITE/ERASE SPEED PERFORMANCE". Toshiba. September 9, 2002. Retrieved March 11, 2006.
  169. ^ "TOSHIBA AND SANDISK INTRODUCE A ONE GIGABIT NAND FLASH MEMORY CHIP, DOUBLING CAPACITY OF FUTURE FLASH PRODUCTS". Toshiba. November 12, 2001. Retrieved June 20, 2019.
  170. ^ a b c d "Our Proud Heritage from 2000 to 2009". Samsung Semiconductor. Samsung. Retrieved June 25, 2019.
  171. ^ "TOSHIBA ANNOUNCES 1 GIGABYTE COMPACTFLASH™CARD". Toshiba. September 9, 2002. Retrieved March 11, 2006.
  172. ^ a b c d e "History". Samsung Electronics. Samsung. Retrieved June 19, 2019.
  173. ^ "TOSHIBA COMMERCIALIZES INDUSTRY'S HIGHEST CAPACITY EMBEDDED NAND FLASH MEMORY FOR MOBILE CONSUMER PRODUCTS". Toshiba. April 17, 2007. Retrieved November 23, 2010.
  174. ^ "Toshiba Launches the Largest Density Embedded NAND Flash Memory Devices". Toshiba. August 7, 2008. Retrieved June 21, 2019.
  175. ^ "Toshiba Launches Industry's Largest Embedded NAND Flash Memory Modules". Toshiba. June 17, 2010. Retrieved June 21, 2019.
  176. ^ "Samsung e·MMC Product family" (PDF). Samsung Electronics. December 2011. Retrieved July 15, 2019.
  177. ^ Shilov, Anton (December 5, 2017). "Samsung Starts Production of 512 GB UFS NAND Flash Memory: 64-Layer V-NAND, 860 MB/s Reads". AnandTech. Retrieved June 23, 2019.
  178. ^ Han-Way Huang (December 5, 2008). Embedded System Design with C805. Cengage Learning. p. 22. ISBN 978-1-111-81079-5. Archived from the original on April 27, 2018.
  179. ^ Marie-Aude Aufaure; Esteban Zimányi (January 17, 2013). Business Intelligence: Second European Summer School, eBISS 2012, Brussels, Belgium, July 15-21, 2012, Tutorial Lectures. Springer. p. 136. ISBN 978-3-642-36318-4. Archived from the original on April 27, 2018.
  180. ^ a b c d "1965: Semiconductor Read-Only-Memory Chips Appear". Computer History Museum. Retrieved June 20, 2019.
  181. ^ "1971: Reusable semiconductor ROM introduced". Computer History Museum. Retrieved June 19, 2019.
  182. ^ Iizuka, H.; Masuoka, F.; Sato, Tai; Ishikawa, M. (1976). "Electrically alterable avalanche-injection-type MOS READ-ONLY memory with stacked-gate structure". IEEE Transactions on Electron Devices. 23 (4): 379–387. Bibcode:1976ITED...23..379I. doi:10.1109/T-ED.1976.18415. ISSN 0018-9383.
  183. ^ µCOM-43 SINGLE CHIP MICROCOMPUTER: USERS' MANUAL (PDF). NEC Microcomputers. January 1978. Retrieved June 27, 2019.
  184. ^ "2716: 16K (2K x 8) UV ERASABLE PROM" (PDF). Intel. Retrieved June 27, 2019.
  185. ^ "1982 CATALOG" (PDF). NEC Electronics. Retrieved June 20, 2019.
  186. ^ Component Data Catalog (PDF). Intel. 1978. p. 1–3. Retrieved June 27, 2019.
  187. ^ "27256 Datasheet" (PDF). Intel. Retrieved July 2, 2019.
  188. ^ "History of Fujitsu's Semiconductor Business". Fujitsu. Retrieved July 2, 2019.
  189. ^ "D27512-30 Datasheet" (PDF). Intel. Retrieved July 2, 2019.
  190. ^ a b Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. p. 330. ISBN 9783540342588.
  191. ^ Lambrechts, Wynand; Sinha, Saurabh; Abdallah, Jassem Ahmed; Prinsloo, Jaco (2018). Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques. CRC Press. p. 59. ISBN 9781351248655.
  192. ^ Belzer, Jack; Holzman, Albert G.; Kent, Allen (1978). Encyclopedia of Computer Science and Technology: Volume 10 - Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification. CRC Press. p. 402. ISBN 9780824722609.
  193. ^ "Intel® Microprocessor Quick Reference Guide". Intel. Retrieved June 27, 2019.
  194. ^ "1978: Double-well fast CMOS SRAM (Hitachi)" (PDF). Semiconductor History Museum of Japan. Retrieved July 5, 2019.
  195. ^ "0.18-micron Technology". TSMC. Retrieved June 30, 2019.
  196. ^ a b c d 65nm CMOS Process Technology
  197. ^ Diefendorff, Keith (15 November 1999). "Hal Makes Sparcs Fly". Microprocessor Report, Volume 13, Number 5.
  198. ^ a b Cutress, Ian. "Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review". AnandTech. Retrieved June 19, 2019.
  199. ^ "Samsung Shows Industry's First 2-Gigabit DDR2 SDRAM". Samsung Semiconductor. Samsung. September 20, 2004. Retrieved June 25, 2019.
  200. ^ Williams, Martyn (July 12, 2004). "Fujitsu, Toshiba begin 65nm chip trial production". InfoWorld. Retrieved June 26, 2019.
  201. ^ Elpida's presentation at Via Technology Forum 2005 and Elpida 2005 Annual Report
  202. ^ Fujitsu Introduces World-class 65-Nanometer Process Technology for Advanced Server, Mobile Applications
  203. ^ "TOSHIBA COMMERCIALIZES INDUSTRY'S HIGHEST CAPACITY EMBEDDED NAND FLASH MEMORY FOR MOBILE CONSUMER PRODUCTS". Toshiba. April 17, 2007. Retrieved November 23, 2010.
  204. ^ a b c d "Intel Now Packs 100 Million Transistors in Each Square Millimeter". IEEE Spectrum: Technology, Engineering, and Science News. Retrieved November 14, 2018.
  205. ^ "Toshiba Launches the Largest Density Embedded NAND Flash Memory Devices". Toshiba. August 7, 2008. Retrieved June 21, 2019.
  206. ^ "40nm Technology". TSMC. Retrieved June 30, 2019.
  207. ^ "Toshiba Makes Major Advances in NAND Flash Memory with 3-bit-per-cell 32nm generation and with 4-bit-per-cell 43nm technology". Toshiba. February 11, 2009. Retrieved June 21, 2019.
  208. ^ "History: 2010s". SK Hynix. Retrieved July 8, 2019.
  209. ^ Shimpi, Anand Lal (June 8, 2012). "SandForce Demos 19nm Toshiba & 20nm IMFT NAND Flash". AnandTech. Retrieved June 19, 2019.
  210. ^ "History: 2010s". SK Hynix. Retrieved July 8, 2019.
  211. ^ a b Schor, David (April 16, 2019). "TSMC Announces 6-Nanometer Process". WikiChip Fuse. Retrieved May 31, 2019.
  212. ^ "16/12nm Technology". TSMC. Retrieved June 30, 2019.
  213. ^ a b c "VLSI 2018: Samsung's 8nm 8LPP, a 10nm extension". WikiChip Fuse. July 1, 2018. Retrieved May 31, 2019.
  214. ^ "Samsung Mass Producing 128Gb 3-bit MLC NAND Flash". Tom's Hardware. April 11, 2013. Retrieved June 21, 2019.
  215. ^ "10nm Technology". TSMC. Retrieved June 30, 2019.
  216. ^ Schor, David (July 22, 2018). "VLSI 2018: GlobalFoundries 12nm Leading-Performance, 12LP". WikiChip Fuse. Retrieved May 31, 2019.
  217. ^ a b c Nenni, Daniel (January 2, 2019). "Samsung vs TSMC 7nm Update". Semiwiki. Retrieved July 6, 2019.
  218. ^ "7nm Technology". TSMC. Retrieved June 30, 2019.
  219. ^ Schor, David (June 15, 2018). "A Look at Intel's 10nm Std Cell as TechInsights Reports on the i3-8121U, finds Ruthenium". WikiChip Fuse. Retrieved May 31, 2019.
  220. ^ Jones, Scotten, 7nm, 5nm and 3nm Logic, current and projected processes
  221. ^ Shilov, Anton. "Samsung Completes Development of 5nm EUV Process Technology". AnandTech. Retrieved May 31, 2019.
  222. ^ "Brief History". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  223. ^ a b c d "1953: Transistorized Computers Emerge". Computer History Museum. Retrieved June 19, 2019.
  224. ^ "ETL Mark III Transistor-Based Computer". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  225. ^ "【NEC】 NEAC-2201". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  226. ^ "【Hitachi and Japanese National Railways】 MARS-1". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  227. ^ The IBM 7070 Data Processing System. Avery et al. (page 167)
  228. ^ "【Matsushita Electric Industrial】 MADIC-I transistor-based computer". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  229. ^ "【NEC】 NEAC-2203". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  230. ^ "【Toshiba】 TOSBAC-2100". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  231. ^ 7090 Data Processing System
  232. ^ "【Mitsubishi Electric】 MELCOM 1101". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  233. ^ "【NEC】NEAC-L2". IPSJ Computer Museum. Information Processing Society of Japan. Retrieved June 19, 2019.
  234. ^ Jan M. Rabaey, Digital Integrated Circuits, Fall 2001: Course Notes, Chapter 6: Designing Combinatorial Logic Gates in CMOS, retrieved October 27, 2012.
  235. ^ Richard F. Tinder (January 2000). Engineering Digital Design. Academic Press. ISBN 978-0-12-691295-1.
  236. ^ Asadi, P. (2007). "Energy-efficient 32 × 32-bit multiplier in tunable near-zero threshold CMOS" (PDF). World Applied Sciences Journal. 2 (4): 341–7. ISSN 1818-4952.
  237. ^ a b c d Engineers, Institute of Electrical Electronics (2000). IEEE Standard 100: The Authoritative Dictionary of IEEE Standards Terms (7th ed.). doi:10.1109/IEEESTD.2000.322230. ISBN 978-0-7381-2601-2. IEEE Std 100-2000.
  238. ^ a b c Smith, Kevin (August 11, 1983). "Image processor handles 256 pixels simultaneously". Electronics.
  239. ^ Kanellos, Michael (February 9, 2005). "Cell chip: Hit or hype?". CNET News. Archived from the original on October 25, 2012.

External linksEdit