Open main menu

Template:Infobox element/symbol-to-valence-group

Template documentation[view] [edit] [history] [purge]

Content maintenance (editing this data set)Edit

UsageEdit

Automated used in {{Infobox element}} (talk):

  • Hg: {{Infobox element/symbol-to-oxidation-state|symbol=Hg}} → −2 , +1 (mercurous), +2 (mercuric) (a mildly basic oxide)
  • Hs: {{Infobox element/symbol-to-oxidation-state|symbol=Hs}} → (+2), (+3), (+4), (+5), (+6), +8[1][2][3][4] (parenthesized: prediction)

DataEdit

Oxidation states data sets (WP:ELEMENTS talk)
Symbol Z Name complete main group val note
 
1 hydrogen H −1, +1 (an amphoteric oxide) −1, +1 1 I
2 helium He 0 0 18 0
3 lithium Li +1 (a strongly basic oxide) +1 1 I
4 beryllium Be +1,[5] +2 (an amphoteric oxide) +2 2 II
5 boron B −5, −1, +1, +2, +3[6][7] (a mildly acidic oxide) +3 13 III
6 carbon C −4, −3, −2, −1, 0, +1,[8] +2, +3,[9] +4[10] (a mildly acidic oxide) −4, +4 14 IV
7 nitrogen N −3, −2, −1, +1, +2, +3, +4, +5 (a strongly acidic oxide) −3, +3, +5 15 V
8 oxygen O −2, −1, +1, +2 −2 16 VI
9 fluorine F −1 (oxidizes oxygen) −1 17 VII
10 neon Ne 0 0 18 0
11 sodium Na −1, +1 (a strongly basic oxide) +1 1 I
12 magnesium Mg +1,[11] +2 (a strongly basic oxide) +2 2 II
13 aluminium Al −2, −1, +1,[12] +2,[13] +3 (an amphoteric oxide) +3 13 III
14 silicon Si −4, −3, −2, −1, +1,[14] +2, +3, +4 (an amphoteric oxide) −4, +4 14 IV
15 phosphorus P −3, −2, −1, +1,[15] +2, +3, +4, +5 (a mildly acidic oxide) −3, +3, +5 15 V
16 sulfur S −2, −1, +1, +2, +3, +4, +5, +6 (a strongly acidic oxide) −2, +2, +4, +6 16 VI
17 chlorine Cl −1, +1, +2, +3, +4, +5, +6, +7 (a strongly acidic oxide) −1, +1, +3, +5, +7 17 VII
18 argon Ar 0 0 18 0
19 potassium K −1, +1 (a strongly basic oxide) +1 1 I
20 calcium Ca +1,[16] +2 (a strongly basic oxide) +2 2 II
21 scandium Sc +1,[17] +2,[18] +3 (an amphoteric oxide) +3 3 III
22 titanium Ti −2, −1, +1, +2, +3, +4[19] (an amphoteric oxide) +4 4 IV
23 vanadium V −3, −1, +1, +2, +3, +4, +5 (an amphoteric oxide) +5 5 V
24 chromium Cr −4, −2, −1, +1, +2, +3, +4, +5, +6 (depending on the oxidation state, an acidic, basic, or amphoteric oxide) +3, +6 6 VI
25 manganese Mn −3, −2, −1, +1, +2, +3, +4, +5, +6, +7 (depending on the oxidation state, an acidic, basic, or amphoteric oxide) +2, +4, +7 7 VII
26 iron Fe −4, −2, −1, +1,[20] +2, +3, +4, +5,[21] +6, +7[22] (an amphoteric oxide) +2, +3, +6 8 VIII
27 cobalt Co −3, −1, +1, +2, +3, +4, +5[23] (an amphoteric oxide) +2, +3 9 VIII
28 nickel Ni −2, −1, +1,[24] +2, +3, +4[25] (a mildly basic oxide) +2 10 VIII
29 copper Cu −2, +1, +2, +3, +4 (a mildly basic oxide) +2 11 I
30 zinc Zn −2, 0, +1, +2 (an amphoteric oxide) +2 12 II
31 gallium Ga −5, −4, −2, −1, +1, +2, +3[26] (an amphoteric oxide) +3 13 III
32 germanium Ge −4 −3, −2, −1, 0, +1, +2, +3, +4 (an amphoteric oxide) −4, +2, +4 14 IV
33 arsenic As −3, −2, −1, +1,[27] +2, +3, +4, +5 (a mildly acidic oxide) −3, +3, +5 15 V
34 selenium Se −2, −1, +1,[28] +2, +3, +4, +5, +6 (a strongly acidic oxide) −2, +2, +4, +6 16 VI
35 bromine Br −1, +1, +3, +4, +5, +7 (a strongly acidic oxide) −1, +1, +3, +5 17 VII
36 krypton Kr 0, +1, +2 (rarely more than 0; oxide is unknown) 0 18 0
37 rubidium Rb −1, +1 (a strongly basic oxide) +1 1 I
38 strontium Sr +1,[29] +2 (a strongly basic oxide) +2 2 II
39 yttrium Y +1, +2, +3 (a weakly basic oxide) +3 3 III
40 zirconium Zr −2, +1,[30] +2, +3, +4 (an amphoteric oxide) +4 4 IV
41 niobium Nb −3, −1, +1, +2, +3, +4, +5 (a mildly acidic oxide) +5 5 V
42 molybdenum Mo −4, −2, −1, +1,[31] +2, +3, +4, +5, +6 (a strongly acidic oxide) +4, +6 6 VI
43 technetium Tc −3, +1,[32] +2, +3,[32] +4, +5, +6, +7 (a strongly acidic oxide) +4, +7 7 VII
44 ruthenium Ru −4, −2, +1,[33] +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide) +3, +4 8 VIII
45 rhodium Rh −3, −1, +1,[34] +2, +3, +4, +5, +6 (an amphoteric oxide) +3 9 VIII
46 palladium Pd 0, +1, +2, +3, +4 (a mildly basic oxide) +2, +4 10 VIII
47 silver Ag −2, −1, +1, +2, +3 (an amphoteric oxide) +1 11 I
48 cadmium Cd −2, +1, +2 (a mildly basic oxide) +2 12 II
49 indium In −5, −2, −1, +1, +2, +3[35] (an amphoteric oxide) +3 13 III
50 tin Sn −4, −3, −2, −1, +1,[36] +2, +3,[37] +4 (an amphoteric oxide) −4, +2, +4 14 IV
51 antimony Sb −3, −2, −1, +1, +2, +3, +4, +5 (an amphoteric oxide) −3, +3, +5 15 V
52 tellurium Te −2, −1, +1, +2, +3, +4, +5, +6 (a mildly acidic oxide) −2, +2, +4, +6 16 VI
53 iodine I −1, +1, +3, +4, +5, +6, +7 (a strongly acidic oxide) −1, +1, +3, +5, +7 17 VII
54 xenon Xe 0, +1, +2, +4, +6, +8 (rarely more than 0; a weakly acidic oxide) 0 18 0
55 caesium Cs −1, +1[38] (a strongly basic oxide) +1 1 I
56 barium Ba +1, +2 (a strongly basic oxide) +2 2 II
57 lanthanum La +1, +2, +3 (a strongly basic oxide) +3 3 III
58 cerium Ce +1, +2, +3, +4 (a mildly basic oxide) +3, +4 n/a -
59 praseodymium Pr +1,[39] +2, +3, +4, +5 (a mildly basic oxide) +3 n/a -
60 neodymium Nd +2, +3, +4 (a mildly basic oxide) +3 n/a -
61 promethium Pm +2, +3 (a mildly basic oxide) +3 n/a -
62 samarium Sm +1, +2, +3, +4 (a mildly basic oxide) +3 n/a -
63 europium Eu +1, +2, +3 (a mildly basic oxide) +2, +3 n/a -
64 gadolinium Gd +1, +2, +3 (a mildly basic oxide) +3 n/a -
65 terbium Tb +1, +2, +3, +4 (a weakly basic oxide) +3 n/a -
66 dysprosium Dy +1, +2, +3, +4 (a weakly basic oxide) +3 n/a -
67 holmium Ho +1, +2, +3 (a basic oxide) +3 n/a -
68 erbium Er +1, +2, +3 (a basic oxide) +3 n/a -
69 thulium Tm +2, +3 (a basic oxide) +3 n/a -
70 ytterbium Yb +1, +2, +3 (a basic oxide) +3 n/a -
71 lutetium Lu +1, +2, +3 (a weakly basic oxide) +3 n/a -
72 hafnium Hf −2, +1, +2, +3, +4 (an amphoteric oxide) +4 4 IV
73 tantalum Ta −3, −1, +1, +2, +3, +4, +5 (a mildly acidic oxide) +5 5 V
74 tungsten W −4, −2, −1, 0, +1, +2, +3, +4, +5, +6 (a mildly acidic oxide) +4, +6 6 VI
75 rhenium Re −3, −1, 0, +1, +2, +3, +4, +5, +6, +7 (a mildly acidic oxide) +4 7 VII
76 osmium Os −4, −2, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide) +4 8 VIII
77 iridium Ir −3, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8, +9[40] +3, +4 9 VIII
78 platinum Pt −3, −2, −1, +1, +2, +3, +4, +5, +6 (a mildly basic oxide) +2, +4 10 VIII
79 gold Au −3, −2, −1, +1, +2, +3, +5 (an amphoteric oxide) +1, +3 11 I
80 mercury Hg −2 , +1 (mercurous), +2 (mercuric) (a mildly basic oxide) +2 12 II
81 thallium Tl −5,[41] −2, −1, +1, +2, +3 (a mildly basic oxide) +1, +3 13 III
82 lead Pb −4, −2, −1, +1, +2, +3, +4 (an amphoteric oxide) +2, +4 14 IV
83 bismuth Bi −3, −2, −1, +1, +2, +3, +4, +5 (a mildly acidic oxide) +3 15 V
84 polonium Po −2, +2, +4, +5,[42] +6 (an amphoteric oxide) −2, +2, +4 16 VI
85 astatine At −1, +1, +3, +5, +7[43] −1, +1 17 VII
86 radon Rn 0, +2, +6 0 18 0
87 francium Fr +1 (a strongly basic oxide) +1 1 I
88 radium Ra +2 (expected to have a strongly basic oxide) +2 2 II
89 actinium Ac +2, +3 (a strongly basic oxide) +3 3 III
90 thorium Th +1, +2, +3, +4 (a weakly basic oxide) +4 n/a -
91 protactinium Pa +2, +3, +4, +5 (a weakly basic oxide) +5 n/a -
92 uranium U +1, +2, +3,[44] +4, +5, +6 (a weakly basic oxide) +6 n/a -
93 neptunium Np +1, +2, +3, +4, +5, +6, +7 (an amphoteric oxide) +5 n/a -
94 plutonium Pu +1, +2, +3, +4, +5, +6, +7 (an amphoteric oxide) +4 n/a -
95 americium Am +2, +3, +4, +5, +6, +7 (an amphoteric oxide) +3 n/a -
96 curium Cm +2, +3, +4, +5,[45] +6[46] (an amphoteric oxide) +3 n/a -
97 berkelium Bk +2, +3, +4, +5[45] +3 n/a -
98 californium Cf +2, +3, +4, +5[47][45] +3 n/a -
99 einsteinium Es +2, +3, +4 +3 n/a -
100 fermium Fm +2, +3 +3 n/a -
101 mendelevium Md +2, +3 +3 n/a -
102 nobelium No +2, +3 +2 n/a -
103 lawrencium Lr +3 +3 n/a -
104 rutherfordium Rf (+2), (+3), +4[48][1][3] (parenthesized: prediction) (+3), +4 (parenthesized: prediction) 4 IV
105 dubnium Db (+3), (+4), +5[1][3] (parenthesized: prediction) +5 5 V
106 seaborgium Sg 0, (+3), (+4), (+5), +6[1][3] (parenthesized: prediction) (+4), +6 (parenthesized: prediction) 6 VI
107 bohrium Bh (+3), (+4), (+5), +7[1][3] (parenthesized: prediction) (+3), (+4), (+5), +7 (parenthesized: prediction) 7 VII
108 hassium Hs (+2), (+3), (+4), (+5), (+6), +8[1][2][3][4] (parenthesized: prediction) (+2), (+4), (+6), +8 (parenthesized: prediction) 8 VIII
109 meitnerium Mt (+1), (+3), (+4), (+6), (+8), (+9) (predicted)[1][49][50][3] (+1), (+3), (+6) (predicted) 9 VIII
110 darmstadtium Ds (0), (+2), (+4), (+6), (+8) (predicted)[1][3] (0), (+2), (+8) (predicted) 10 VIII
111 roentgenium Rg (−1), (+1), (+3), (+5) (predicted)[1][3] (+3) (predicted) 11 I
112 copernicium Cn 0, (+1), +2, (+4) (parenthesized: prediction)[1][51][3] 0, +2 12 II
113 nihonium Nh (−1), (+1), (+3), (+5) (predicted)[1][3][52] (+1), (+3) (predicted) 13 III
114 flerovium Fl (0), (+1), (+2), (+4), (+6) (predicted)[1][3][53] (+2) (predicted) 14 IV
115 moscovium Mc (+1), (+3) (predicted)[1][3] (+1), (+3) (predicted) 15 V
116 livermorium Lv (−2),[54] (+2), (+4) (predicted)[1] (+2) (predicted) 16 VI
117 tennessine Ts (−1), (+1), (+3), (+5) (predicted)[3][1] (+1), (+3) (predicted) 17 VII
118 oganesson Og (−1),[1] (0), (+1),[55] (+2),[56] (+4),[56] (+6)[1] (predicted) (+2), (+4) (predicted) 18 0
119 ununennium Uue (+1), (+3) (predicted)[1] (+1) (predicted) 1 I
120 unbinilium Ubn (+1),[57] (+2), (+4) (predicted)[1] (+2) (predicted) 2 II
121 unbiunium Ubu (+1), (+3) (predicted)[1][58] (+3) (predicted) 3 III
122 unbibium Ubb (+4) (predicted)[59] (+4) (predicted) -
123 unbitrium Ubt (+5) (predicted)[59] (+5) (predicted)
124 unbiquadium Ubq (+6) (predicted)[59] (+6) (predicted)
125 unbipentium Ubp (+1), (+6), (+7) (predicted)[59] (+6), (+7) (predicted)
126 unbihexium Ubh (+1), (+2), (+4), (+6), (+8) (predicted)[59] (+4), (+6), (+8) (predicted)

ReferencesEdit

  1. ^ a b c d e f g h i j k l m n o p q r s t u Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  2. ^ a b c Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press. p. 215–7. ISBN 978-0-19-960563-7.
  3. ^ a b c d e f g h i j k l m n o Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
  4. ^ a b Düllmann, Christoph E. (31 October 2008). "Investigation of group 8 metallocenes @ TASCA" (PDF). 7th Workshop on Recoil Separator for Superheavy Element Chemistry TASCA 08. Gesellschaft für Schwerionenforschung. Retrieved 25 March 2013.
  5. ^ "Beryllium: Beryllium(I) Hydride compound data" (PDF). bernath.uwaterloo.ca. Retrieved 2007-12-10.
  6. ^ Zhang, K.Q.; Guo, B.; Braun, V.; Dulick, M.; Bernath, P.F. (1995). "Infrared Emission Spectroscopy of BF and AIF" (PDF). J. Molecular Spectroscopy. 170 (1): 82. Bibcode:1995JMoSp.170...82Z. doi:10.1006/jmsp.1995.1058.
  7. ^ Melanie Schroeder. "Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden" (PDF) (in German). p. 139.
  8. ^ "Fourier Transform Spectroscopy of the Electronic Transition of the Jet-Cooled CCI Free Radical" (PDF). Retrieved 2007-12-06.
  9. ^ "Fourier Transform Spectroscopy of the System of CP" (PDF). Retrieved 2007-12-06.
  10. ^ "Carbon: Binary compounds". Retrieved 2007-12-06.
  11. ^ Bernath, P. F.; Black, J. H. & Brault, J. W. (1985). "The spectrum of magnesium hydride" (PDF). Astrophysical Journal. 298: 375. Bibcode:1985ApJ...298..375B. doi:10.1086/163620.
  12. ^ Dohmeier, C.; Loos, D.; Schnöckel, H. (1996). "Aluminum(I) and Gallium(I) Compounds: Syntheses, Structures, and Reactions". Angewandte Chemie International Edition. 35 (2): 129–149. doi:10.1002/anie.199601291.
  13. ^ D. C. Tyte (1964). "Red (B2Π–A2σ) Band System of Aluminium Monoxide". Nature. 202 (4930): 383. Bibcode:1964Natur.202..383T. doi:10.1038/202383a0.
  14. ^ Ram, R. S.; et al. (1998). "Fourier Transform Emission Spectroscopy of the A2D–X2P Transition of SiH and SiD" (PDF). J. Mol. Spectr. 190 (2): 341–352. doi:10.1006/jmsp.1998.7582. PMID 9668026.
  15. ^ Ellis, Bobby D.; MacDonald, Charles L. B. (2006). "Phosphorus(I) Iodide: A Versatile Metathesis Reagent for the Synthesis of Low Oxidation State Phosphorus Compounds". Inorganic Chemistry. 45 (17): 6864–74. doi:10.1021/ic060186o. PMID 16903744.
  16. ^ Krieck, Sven; Görls, Helmar; Westerhausen, Matthias (2010). "Mechanistic Elucidation of the Formation of the Inverse Ca(I) Sandwich Complex [(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and Stability of Aryl-Substituted Phenylcalcium Complexes". Journal of the American Chemical Society. 132 (35): 12492–12501. doi:10.1021/ja105534w. PMID 20718434.
  17. ^ Smith, R. E. (1973). "Diatomic Hydride and Deuteride Spectra of the Second Row Transition Metals". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 332 (1588): 113–127. Bibcode:1973RSPSA.332..113S. doi:10.1098/rspa.1973.0015.
  18. ^ McGuire, Joseph C.; Kempter, Charles P. (1960). "Preparation and Properties of Scandium Dihydride". Journal of Chemical Physics. 33 (5): 1584–1585. Bibcode:1960JChPh..33.1584M. doi:10.1063/1.1731452.
  19. ^ Andersson, N.; et al. (2003). "Emission spectra of TiH and TiD near 938 nm" (PDF). J. Chem. Phys. 118 (8): 10543. Bibcode:2003JChPh.118.3543A. doi:10.1063/1.1539848.
  20. ^ Ram, R. S. & Bernath, P. F. (2003). "Fourier transform emission spectroscopy of the g4Δ-a4Δ system of FeCl" (PDF). Journal of Molecular Spectroscopy. 221 (2): 261. Bibcode:2003JMoSp.221..261R. doi:10.1016/S0022-2852(03)00225-X.
  21. ^ Demazeau, G.; Buffat, B.; Pouchard, M.; Hagenmuller, P. (1982). "Recent developments in the field of high oxidation states of transition elements in oxides stabilization of Six-coordinated Iron(V)". Zeitschrift für anorganische und allgemeine Chemie. 491: 60–66. doi:10.1002/zaac.19824910109.
  22. ^ Lu, J.; Jian, J.; Huang, W.; Lin, H.; Li, J; Zhou, M. (2016). "Experimental and theoretical identification of the Fe(VII) oxidation state in FeO4−". Physical Chemistry Chemical Physics. 18 (45): 31125–31131. Bibcode:2016PCCP...1831125L. doi:10.1039/C6CP06753K. PMID 27812577.
  23. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1117–1119. ISBN 978-0-08-037941-8.
  24. ^ Pfirrmann, Stefan; Limberg, Christian; Herwig, Christian; Stößer, Reinhard; Ziemer, Burkhard (2009). "A Dinuclear Nickel(I) Dinitrogen Complex and its Reduction in Single-Electron Steps". Angewandte Chemie International Edition. 48 (18): 3357–61. doi:10.1002/anie.200805862. PMID 19322853.
  25. ^ Carnes, Matthew; Buccella, Daniela; Chen, Judy Y.-C.; Ramirez, Arthur P.; Turro, Nicholas J.; Nuckolls, Colin; Steigerwald, Michael (2009). "A Stable Tetraalkyl Complex of Nickel(IV)". Angewandte Chemie International Edition. 48 (2): 290–4. doi:10.1002/anie.200804435. PMID 19021174.
  26. ^ Hofmann, Patrick (1997). Colture. Ein Programm zur interaktiven Visualisierung von Festkörperstrukturen sowie Synthese, Struktur und Eigenschaften von binären und ternären Alkali- und Erdalkalimetallgalliden (PDF) (in German). PhD Thesis, ETH Zurich. p. 72. doi:10.3929/ethz-a-001859893. ISBN 978-3728125972.
  27. ^ Ellis, Bobby D.; MacDonald, Charles L. B. (2004). "Stabilized Arsenic(I) Iodide: A Ready Source of Arsenic Iodide Fragments and a Useful Reagent for the Generation of Clusters". Inorganic Chemistry. 43 (19): 5981–6. doi:10.1021/ic049281s. PMID 15360247.
  28. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  29. ^ Colarusso, P.; Guo, B.; Zhang, K.-Q.; Bernath, P. F. (1996). "High-Resolution Infrared Emission Spectrum of Strontium Monofluoride" (PDF). J. Molecular Spectroscopy. 175 (1): 158. Bibcode:1996JMoSp.175..158C. doi:10.1006/jmsp.1996.0019.
  30. ^ "Zirconium: zirconium(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  31. ^ "Molybdenum: molybdenum(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  32. ^ a b "Technetium: technetium(III) iodide compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  33. ^ "Ruthenium: ruthenium(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  34. ^ "Rhodium: rhodium(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  35. ^ Guloy, A. M.; Corbett, J. D. (1996). "Synthesis, Structure, and Bonding of Two Lanthanum Indium Germanides with Novel Structures and Properties". Inorganic Chemistry. 35 (9): 2616–22. doi:10.1021/ic951378e.
  36. ^ "HSn". NIST Chemistry WebBook. National Institute of Standards and Technology. Retrieved 23 January 2013.
  37. ^ "SnH3". NIST Chemistry WebBook. National Institure of Standards and Technology. Retrieved 23 January 2013.
  38. ^ Dye, J. L. (1979). "Compounds of Alkali Metal Anions". Angewandte Chemie International Edition. 18 (8): 587–598. doi:10.1002/anie.197905871.
  39. ^ Chen, Xin; et al. (2019-12-13). "Lanthanides with Unusually Low Oxidation States in the PrB3– and PrB4– Boride Clusters". Inorganic Chemistry. 58 (1): 411–418. doi:10.1021/acs.inorgchem.8b02572. PMID 30543295.
  40. ^ Wang, Guanjun; Zhou, Mingfei; Goettel, James T.; Schrobilgen, Gary G.; Su, Jing; Li, Jun; Schlöder, Tobias; Riedel, Sebastian (2014). "Identification of an iridium-containing compound with a formal oxidation state of IX". Nature. 514 (7523): 475–477. Bibcode:2014Natur.514..475W. doi:10.1038/nature13795. PMID 25341786.
  41. ^ Dong, Z.-C.; Corbett, J. D. (1996). "Na23K9Tl15.3: An Unusual Zintl Compound Containing Apparent Tl57−, Tl48−, Tl37−, and Tl5− Anions". Inorganic Chemistry. 35 (11): 3107–12. doi:10.1021/ic960014z.
  42. ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists: 78. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  43. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.
  44. ^ Morss, L.R.; Edelstein, N.M.; Fuger, J., eds. (2006). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Netherlands: Springer. ISBN 978-9048131464.
  45. ^ a b c Kovács, Attila; Dau, Phuong D.; Marçalo, Joaquim; Gibson, John K. (2018). "Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States". Inorg. Chem. American Chemical Society. 57 (15): 9453–9467. doi:10.1021/acs.inorgchem.8b01450. PMID 30040397.
  46. ^ Domanov, V. P.; Lobanov, Yu. V. (October 2011). "Formation of volatile curium(VI) trioxide CmO3". Radiochemistry. SP MAIK Nauka/Interperiodica. 53 (5): 453–6. doi:10.1134/S1066362211050018.
  47. ^ Greenwood & Earnshaw 1997, p. 1265.
  48. ^ a b Chemical Data. Rutherfordium - Rf, Royal Chemical Society
  49. ^ Ionova, G. V.; Ionova, I. S.; Mikhalko, V. K.; Gerasimova, G. A.; Kostrubov, Yu. N.; Suraeva, N. I. (2004). "Halides of Tetravalent Transactinides (Rf, Db, Sg, Bh, Hs, Mt, 110th Element): Physicochemical Properties". Russian Journal of Coordination Chemistry. 30 (5): 352. doi:10.1023/B:RUCO.0000026006.39497.82.
  50. ^ Himmel, Daniel; Knapp, Carsten; Patzschke, Michael; Riedel, Sebastian (2010). "How Far Can We Go? Quantum-Chemical Investigations of Oxidation State +IX". ChemPhysChem. 11 (4): 865–9. doi:10.1002/cphc.200900910. PMID 20127784.
  51. ^ Gäggeler, Heinz W.; Türler, Andreas (2013). "Gas Phase Chemistry of Superheavy Elements". The Chemistry of Superheavy Elements. Springer Science+Business Media. pp. 415–483. doi:10.1007/978-3-642-37466-1_8. Retrieved 2018-04-21.
  52. ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". In Barysz, Maria; Ishikawa, Yasuyuki (eds.). Relativistic Methods for Chemists. Springer. pp. 63–67. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  53. ^ Schwerdtfeger, Peter; Seth, Michael (2002). "Relativistic Quantum Chemistry of the Superheavy Elements. Closed-Shell Element 114 as a Case Study" (PDF). Journal of Nuclear and Radiochemical Sciences. 3 (1): 133–136. doi:10.14494/jnrs2000.3.133. Retrieved 12 September 2014.
  54. ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists: 83. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  55. ^ Han, Young-Kyu; Bae, Cheolbeom; Son, Sang-Kil; Lee, Yoon Sup (2000). "Spin–orbit effects on the transactinide p-block element monohydrides MH (M=element 113–118)". Journal of Chemical Physics. 112 (6): 2684. Bibcode:2000JChPh.112.2684H. doi:10.1063/1.480842.
  56. ^ a b Kaldor, Uzi; Wilson, Stephen (2003). Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Springer. p. 105. ISBN 978-1402013713. Retrieved 2008-01-18.
  57. ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists: 84. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  58. ^ Amador, Davi H. T.; de Oliveira, Heibbe C. B.; Sambrano, Julio R.; Gargano, Ricardo; de Macedo, Luiz Guilherme M. (12 September 2016). "4-Component correlated all-electron study on Eka-actinium Fluoride (E121F) including Gaunt interaction: Accurate analytical form, bonding and influence on rovibrational spectra". Chemical Physics Letters. 662: 169–175. Bibcode:2016CPL...662..169A. doi:10.1016/j.cplett.2016.09.025.
  59. ^ a b c d e Pyykkö, Pekka (2011). "A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions". Physical Chemistry Chemical Physics. 13 (1): 161–8. Bibcode:2011PCCP...13..161P. doi:10.1039/c0cp01575j. PMID 20967377.

See alsoEdit

comment optionsEdit

See Template:Infobox element/symbol-to-oxidation-state/comment:


|comment= options (as of November 2018):
comment=acidic (an acidic oxide)
comment=mildly acidic (a mildly acidic oxide)
comment=strongly acidic (a strongly acidic oxide)
comment=amphoteric (an amphoteric oxide)
comment=basic (a basic oxide)
comment=weakly basic (a weakly basic oxide)
comment=mildly basic (a mildly basic oxide)
comment=strongly basic (a strongly basic oxide)
comment=strongly basic expected (expected to have a strongly basic oxide) -- Ra
comment=oxidizes oxygen (oxidizes oxygen) -- F
comment=depending (depending on the oxidation state, an acidic, basic, or amphoteric oxide) -- Cr, Mn
comment=rarely non-0, weakly acidic (rarely more than 0; a weakly acidic oxide) -- Xe
comment=rarely non-0, unk oxide (rarely more than 0; oxide is unknown) -- Kr
 
comment=parenthesized (parenthesized: prediction)
comment=predicted (predicted)
comment=<any text> <any text>, including blank
 
WP:ENGVAR (set |engvar= in article page):
comment=parenthesized
|engvar= (parenthesized: prediction)
|engvar=en-US (default) (parenthesized: prediction)
|engvar=en-GB (brackets: prediction)
|engvar=en-OED (brackets: prediction)
|engvar=en-FOO (parenthesized: prediction)


See alsoEdit

Templates used: