Open main menu
An example of a spherical cap in blue (and another in red.)

In geometry, a spherical cap, spherical dome, or spherical segment of one base is a portion of a sphere cut off by a plane. If the plane passes through the center of the sphere, so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a hemisphere.


Volume and surface areaEdit

The volume of the spherical cap and the area of the curved surface may be calculated using combinations of

  • The radius   of the sphere
  • The radius   of the base of the cap
  • The height   of the cap
  • The polar angle   between the rays from the center of the sphere to the apex of the cap (the pole) and the edge of the disk forming the base of the cap
Using   and   Using   and   Using   and  
Volume   [1]    
Area  [1]    

If   denotes the latitude in geographic coordinates, then  .

The relationship between   and   is irrelevant as long as  . For example, the red section of the illustration is also a spherical cap for which  .

The formulas using   and   can be rewritten to use the radius   of the base of the cap instead of  , using the Pythagorean theorem:


so that


Substituting this into the formulas gives:


Deriving the surface area intuitively from the spherical sector volumeEdit

Note that aside from the calculus based argument below, the area of the spherical cap may be derived from the volume   of the spherical sector, by an intuitive argument,[2] as


The intuitive argument is based upon summing the total sector volume from that of infinitesimal triangular pyramids. Utilizing the pyramid (or cone) volume formula of  , where   is the infinitesimal area of each pyramidal base (located on the surface of the sphere) and   is the height of each pyramid from its base to its apex (at the center of the sphere). Since each  , in the limit, is constant and equivalent to the radius   of the sphere, the sum of the infinitesimal pyramidal bases would equal the area of the spherical sector, and:


Deriving the volume and surface area using calculusEdit

Rotating the green area creates a spherical cap with height   and sphere radius  .

The volume and area formulas may be derived by examining the rotation of the function


for  , using the formulas the surface of the rotation for the area and the solid of the revolution for the volume. The area is


The derivative of   is


and hence


The formula for the area is therefore


The volume is



Volumes of union and intersection of two intersecting spheresEdit

The volume of the union of two intersecting spheres of radii   and   is [3]




is the sum of the volumes of the two isolated spheres, and


the sum of the volumes of the two spherical caps forming their intersection. If   is the distance between the two sphere centers, elimination of the variables   and   leads to[4][5]


Surface area bounded by parallel disksEdit

The curved surface area of the spherical segment bounded by two parallel disks is the difference of surface areas of their respective spherical caps. For a sphere of radius  , and caps with heights   and  , the area is


or, using geographic coordinates with latitudes   and  ,[6]


For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016[7]) is 2π·63712|sin 90° − sin 66.56°| = 21.04 million km2, or 0.5·|sin 90° − sin 66.56°| = 4.125% of the total surface area of the Earth.

This formula can also be used to demonstrate that half the surface area of the Earth lies between latitudes 30° South and 30° North in a spherical zone which encompasses all of the Tropics.


Sections of other solidsEdit

The spheroidal dome is obtained by sectioning off a portion of a spheroid so that the resulting dome is circularly symmetric (having an axis of rotation), and likewise the ellipsoidal dome is derived from the ellipsoid.

Hyperspherical capEdit

Generally, the  -dimensional volume of a hyperspherical cap of height   and radius   in  -dimensional Euclidean space is given by [8]


where   (the gamma function) is given by  .

The formula for   can be expressed in terms of the volume of the unit n-ball   and the hypergeometric function   or the regularized incomplete beta function   as


and the area formula   can be expressed in terms of the area of the unit n-ball   as


where  .

Earlier in [9] (1986, USSR Academ. Press) the following formulas were derived:  , where  ,


For odd  



It is shown in [10] that, if   and  , then   where   is the integral of the standard normal distribution.

A more quantitative way of writing this, is in [11] where the bound is   is given. For large caps (that is when   as  ), the bound simplifies to  .

See alsoEdit


  1. ^ a b Polyanin, Andrei D; Manzhirov, Alexander V. (2006), Handbook of Mathematics for Engineers and Scientists, CRC Press, p. 69, ISBN 9781584885023.
  2. ^ Shekhtman, Zor. "Unizor - Geometry3D - Spherical Sectors". YouTube. Zor Shekhtman. Retrieved 31 Dec 2018.
  3. ^ Connolly, Michael L. (1985). "Computation of molecular volume". J. Am. Chem. Soc. 107 (5): 1118–1124. doi:10.1021/ja00291a006.
  4. ^ Pavani, R.; Ranghino, G. (1982). "A method to compute the volume of a molecule". Computers & Chemistry. 6 (3): 133–135. doi:10.1016/0097-8485(82)80006-5.
  5. ^ Bondi, A. (1964). "Van der Waals volumes and radii". J. Phys. Chem. 68 (3): 441–451. doi:10.1021/j100785a001.
  6. ^ Scott E. Donaldson, Stanley G. Siegel (2001). Successful Software Development. ISBN 9780130868268. Retrieved 29 August 2016.
  7. ^ "Obliquity of the Ecliptic (Eps Mean)". Retrieved 2014-05-13.
  8. ^ Li, S (2011). "Concise Formulas for the Area and Volume of a Hyperspherical Cap". Asian J. Math. Stat. 4 (1): 66–70. doi:10.3923/ajms.2011.66.70.
  9. ^ Chudnov, Alexander M. (1986). "On minimax signal generation and reception algorithms (rus.)". Problems of Information Transmission. 22 (4): 49–54.
  10. ^ Chudnov, Alexander M (1991). "Game-theoretical problems of synthesis of signal generation and reception algorithms (rus.)". Problems of Information Transmission. 27 (3): 57–65.
  11. ^ Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. 2016. New directions in nearest neighbor searching with applications to lattice sieving. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms (SODA '16), Robert Kraughgamer (Ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 10-24.

Further readingEdit

  • Richmond, Timothy J. (1984). "Solvent accessible surface area and excluded volume in proteins: Analytical equation for overlapping spheres and implications for the hydrophobic effect". J. Mol. Biol. 178 (1): 63–89. doi:10.1016/0022-2836(84)90231-6. PMID 6548264.
  • Lustig, Rolf (1986). "Geometry of four hard fused spheres in an arbitrary spatial configuration". Mol. Phys. 59 (2): 195–207. Bibcode:1986MolPh..59..195L. doi:10.1080/00268978600102011.
  • Gibson, K. D.; Scheraga, Harold A. (1987). "Volume of the intersection of three spheres of unequal size: a simplified formula". J. Phys. Chem. 91 (15): 4121–4122. doi:10.1021/j100299a035.
  • Gibson, K. D.; Scheraga, Harold A. (1987). "Exact calculation of the volume and surface area of fused hard-sphere molecules with unequal atomic radii". Mol. Phys. 62 (5): 1247–1265. Bibcode:1987MolPh..62.1247G. doi:10.1080/00268978700102951.
  • Petitjean, Michel (1994). "On the analytical calculation of van der Waals surfaces and volumes: some numerical aspects". Int. J. Quantum Chem. 15 (5): 507–523. doi:10.1002/jcc.540150504.
  • Grant, J. A.; Pickup, B. T. (1995). "A Gaussian description of molecular shape". J. Phys. Chem. 99 (11): 3503–3510. doi:10.1021/j100011a016.
  • Busa, Jan; Dzurina, Jozef; Hayryan, Edik; Hayryan, Shura (2005). "ARVO: A fortran package for computing the solvent accessible surface area and the excluded volume of overlapping spheres via analytic equations". Comput. Phys. Commun. 165 (1): 59–96. Bibcode:2005CoPhC.165...59B. doi:10.1016/j.cpc.2004.08.002.

External linksEdit