Open main menu

Short-chain fatty acid

Short-chain fatty acids (SCFAs) are fatty acids with fewer than six carbon atoms.[1] Derived from intestinal microbial fermentation of indigestible foods, SCFAs are the main energy source of colonocytes, making them crucial to gastrointestinal health.[1][2]

List of SCFAsEdit

Lipid number Name Salt/Ester Name Formula Mass
(g/mol)
Diagram
Common Systematic Common Systematic Molecular Structural
C1:0 Formic acid Methanoic acid Formate Methanoate CH2O2 HCOOH 46.03
C2:0 Acetic acid Ethanoic acid Acetate Ethanoate C2H4O2 CH3COOH 60.05
C3:0 Propionic acid Propanoic acid Propionate Propanoate C3H6O2 CH3CH2COOH 74.08
C4:0 Butyric acid Butanoic acid Butyrate Butanoate C4H8O2 CH3(CH2)2COOH 88.11
C4:0 Isobutyric acid 2-Methylpropanoic acid Isobutyrate 2-Methylpropanoate C4H8O2 (CH3)2CHCOOH 88.11
C5:0 Valeric acid Pentanoic acid Valerate Pentanoate C5H10O2 CH3(CH2)3COOH 102.13
C5:0 Isovaleric acid 3-Methylbutanoic acid Isovalerate 3-Methylbutanoate C5H10O2 (CH3)2CHCH2COOH 102.13

FunctionsEdit

SCFAs are produced when dietary fiber is fermented in the colon.[1][3] Acetate, propionate, and butyrate are the three most common SCFAs.[3]

SCFAs and medium-chain fatty acids are primarily absorbed through the portal vein during lipid digestion,[4] while long-chain fatty acids are packed into chylomicrons, enter lymphatic capillaries, then transfer to the blood at the subclavian vein.[1]

SCFAs have diverse physiological roles in body functions.[1][2] They can affect the production of lipids, energy and vitamins.[5] Butyrate is particularly important for colon health because it is the primary energy source for colonocytes.[1][2] The liver can use acetate for energy.[6]

See alsoEdit

ReferencesEdit

  1. ^ a b c d e f Brody, Tom (1999). Nutritional Biochemistry (2nd ed.). Academic Press. p. 320. ISBN 978-0121348366. Retrieved December 21, 2012.
  2. ^ a b c Canfora EE, Jocken JW, Blaak EE (2015). "Short-chain fatty acids in control of body weight and insulin sensitivity". Nature Reviews Endocrinology. 11 (10): 577–91. doi:10.1038/nrendo.2015.128. PMID 26260141.
  3. ^ a b Wong, J. M.; De Souza, R; Kendall, C. W.; Emam, A; Jenkins, D. J. (2006). "Colonic health: Fermentation and short chain fatty acids". Journal of Clinical Gastroenterology. 40 (3): 235–43. doi:10.1097/00004836-200603000-00015. PMID 16633129.
  4. ^ Kuksis, Arnis (2000). "Biochemistry of Glycerolipids and Formation of Chylomicrons". In Christophe, Armand B.; DeVriese, Stephanie (eds.). Fat Digestion and Absorption. The American Oil Chemists Society. p. 163. ISBN 978-1893997127. Retrieved December 21, 2012.
  5. ^ Byrne, C. S; Chambers, E. S; Morrison, D. J; Frost, G (2015). "The role of short chain fatty acids in appetite regulation and energy homeostasis". International Journal of Obesity. 39 (9): 1331–1338. doi:10.1038/ijo.2015.84. PMC 4564526. PMID 25971927.
  6. ^ Roy, Claude C.; Kien, C. Lawrence; Bouthillier, Lise; Levy, Emile (2006). "Short-chain fatty acids: Ready for prime time?". Nutrition in Clinical Practice. 21 (4): 351–366. doi:10.1177/0115426506021004351. ISSN 0884-5336. PMID 16870803.

Further readingEdit