Open main menu
Classification of fluids with shear stress as a function of shear rate: Pseudoplastic, Bingham and Bingham pseudoplastic all show reduction in apparent viscosity with increasing shear rate.

In rheology, shear thinning is the non-Newtonian behavior of fluids whose viscosity decreases under shear strain. It is sometimes considered synonymous for pseudoplastic behaviour,[1][2] and is usually defined as excluding time-dependent effects, such as thixotropy.[3] Shear-thinning behaviour is generally not seen in pure liquids with low molecular mass, or ideal solutions of small molecules like sucrose or sodium chloride, but is often seen in polymer solutions and molten polymers, and complex fluids and suspensions like ketchup, whipped cream, blood,[4] paint, and nail polish.

Relationship with thixotropyEdit

Some authors consider shear-thinning to be a special case of thixotropic behaviour, because the recovery of the microstructure of the liquid to its initial state will always require a non-zero time. When the recovery of viscosity after disturbance is very rapid however, the observed behaviour is classic shear-thinning or pseudoplasticity, because as soon as the shear is removed, the viscosity returns to normal. When it takes a measurable time for the viscosity to recover, thixotropic behaviour is observed.[5] When describing the viscosity of liquids, however, it is therefore useful to distinguish shear-thinning (pseudoplastic) behaviour from thixotropic behaviour, where the viscosity at all shear rates is decreased for some duration after agitation: both of these effects can often be seen separately in the same liquid.[6]

Everyday examplesEdit

Modern paints are examples of pseudoplastic materials. When modern paints are applied, the shear created by the brush or roller will allow them to thin and wet out the surface evenly. Once applied, the paints regain their higher viscosity, which avoids drips and runs. Ketchup is a shear-thinning fluid.

See alsoEdit

External linksEdit


  1. ^ Mezger, Thomas G. (2006). The rheology handbook : for users of rotational and oscillatory rheometers (2., rev. ed.). Hannover: Vincentz Network. p. 34. ISBN 9783878701743.
  2. ^ Heldman, R. Paul Singh, Dennis R. (2013). Introduction to food engineering (5th ed.). Amsterdam: Elsevier. p. 160. ISBN 9780124016750.
  3. ^ Bair, Scott (2007). High-pressure rheology for quantitative elastohydrodynamics (1st ed.). Amsterdam: Elsevier. p. 136. ISBN 9780080475301. Retrieved 24 May 2015.
  4. ^ Tazraei, P.; Riasi, A.; Takabi, B. (2015). "The influence of the non-Newtonian properties of blood on blood-hammer through the posterior cerebral artery". Mathematical Biosciences. 264: 119–127. doi:10.1016/j.mbs.2015.03.013.
  5. ^ Barnes, Howard A. (1997). "Thixotropy a review" (PDF). J. Non-Newtonian Fluid Mech., 70: 3. Archived from the original (PDF) on 2016-04-30. Retrieved 2011-11-30.
  6. ^ editor, David B. Troy (2005). Remington : The science and practice of pharmacy (21st ed.). Philadelphia, PA: Lippincott, Williams & Wilkins. p. 344. ISBN 9780781746731. Retrieved 24 May 2015.