# Schouten tensor

In Riemannian geometry, the Schouten tensor is a second-order tensor introduced by Jan Arnoldus Schouten. It is defined for n ≥ 3 by:

${\displaystyle P={\frac {1}{n-2}}\left(\mathrm {Ric} -{\frac {R}{2(n-1)}}g\right)\,\Leftrightarrow \mathrm {Ric} =(n-2)P+Jg\,,}$

where Ric is the Ricci tensor, R is the scalar curvature, g is the Riemannian metric, ${\displaystyle J={\frac {1}{2(n-1)}}R}$ is the trace of P and n is the dimension of the manifold.

The Weyl tensor equals the Riemann curvature tensor minus the Kulkarni–Nomizu product of the Schouten tensor with the metric. In an index notation

${\displaystyle R_{ijkl}=W_{ijkl}+g_{ik}P_{jl}-g_{jk}P_{il}-g_{il}P_{jk}+g_{jl}P_{ik}\,.}$

The Schouten tensor often appears in conformal geometry because of its relatively simple conformal transformation law

${\displaystyle g_{ij}\mapsto \Omega ^{2}g_{ij}\Rightarrow P_{ij}\mapsto P_{ij}-\nabla _{i}\Upsilon _{j}+\Upsilon _{i}\Upsilon _{j}-{\frac {1}{2}}\Upsilon _{k}\Upsilon ^{k}g_{ij}\,,}$

where ${\displaystyle \Upsilon _{i}:=\Omega ^{-1}\partial _{i}\Omega \,.}$