Reissner–Nordström metric

In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M. The analogous solution for a charged, rotating body is given by the Kerr–Newman metric.

The metric was discovered between 1916 and 1921 by Hans Reissner,[1] Hermann Weyl,[2] Gunnar Nordström[3] and George Barker Jeffery[4] independently.[5]

The metric edit

In spherical coordinates  , the Reissner–Nordström metric (i.e. the line element) is  

  • Where   is the speed of light.
  •   is the proper time.
  •   is the time coordinate (measured by a stationary clock at infinity).
  •   is the radial coordinate.
  •   are the spherical angles.
  •   is the Schwarzschild radius of the body given by

 .

  •   is a characteristic length scale given by

 

The total mass of the central body and its irreducible mass are related by[6][7]  

The difference between   and   is due to the equivalence of mass and energy, which makes the electric field energy also contribute to the total mass.

In the limit that the charge   (or equivalently, the length scale  ) goes to zero, one recovers the Schwarzschild metric. The classical Newtonian theory of gravity may then be recovered in the limit as the ratio   goes to zero. In the limit that both   and   go to zero, the metric becomes the Minkowski metric for special relativity.

In practice, the ratio   is often extremely small. For example, the Schwarzschild radius of the Earth is roughly 9 mm (3/8 inch), whereas a satellite in a geosynchronous orbit has an orbital radius   that is roughly four billion times larger, at 42,164 km (26,200 miles). Even at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The ratio only becomes large close to black holes and other ultra-dense objects such as neutron stars.

Charged black holes edit

Although charged black holes with rQ ≪ rs are similar to the Schwarzschild black hole, they have two horizons: the event horizon and an internal Cauchy horizon.[8] As with the Schwarzschild metric, the event horizons for the spacetime are located where the metric component   diverges; that is, where

 

This equation has two solutions:

 

These concentric event horizons become degenerate for 2rQ = rs, which corresponds to an extremal black hole. Black holes with 2rQ > rs cannot exist in nature because if the charge is greater than the mass there can be no physical event horizon (the term under the square root becomes negative).[9] Objects with a charge greater than their mass can exist in nature, but they can not collapse down to a black hole, and if they could, they would display a naked singularity.[10] Theories with supersymmetry usually guarantee that such "superextremal" black holes cannot exist.

The electromagnetic potential is

 

If magnetic monopoles are included in the theory, then a generalization to include magnetic charge P is obtained by replacing Q2 by Q2 + P2 in the metric and including the term P cos θ  in the electromagnetic potential.[clarification needed]

Gravitational time dilation edit

The gravitational time dilation in the vicinity of the central body is given by

 
which relates to the local radial escape velocity of a neutral particle
 

Christoffel symbols edit

The Christoffel symbols

 
with the indices
 
give the nonvanishing expressions
 

Given the Christoffel symbols, one can compute the geodesics of a test-particle.[11][12]

Tetrad form edit

Instead of working in the holonomic basis, one can perform efficient calculations with a tetrad.[13] Let   be a set of one-forms with internal Minkowski index  , such that  . The Reissner metric can be described by the tetrad

 ,
 ,
 
 

where  . The parallel transport of the tetrad is captured by the connection one-forms  . These have only 24 independent components compared to the 40 components of  . The connections can be solved for by inspection from Cartan's equation  , where the left hand side is the exterior derivative of the tetrad, and the right hand side is a wedge product.

 
 
 
 
 

The Riemann tensor   can be constructed as a collection of two-forms by the second Cartan equation   which again makes use of the exterior derivative and wedge product. This approach is significantly faster than the traditional computation with  ; note that there are only four nonzero   compared with nine nonzero components of  .

Equations of motion edit

[14]

Because of the spherical symmetry of the metric, the coordinate system can always be aligned in a way that the motion of a test-particle is confined to a plane, so for brevity and without restriction of generality we use θ instead of φ. In dimensionless natural units of G = M = c = K = 1 the motion of an electrically charged particle with the charge q is given by

 
which yields
 
 
 

All total derivatives are with respect to proper time  .

Constants of the motion are provided by solutions   to the partial differential equation[15]

 
after substitution of the second derivatives given above. The metric itself is a solution when written as a differential equation
 

The separable equation

 
immediately yields the constant relativistic specific angular momentum
 
a third constant obtained from
 
is the specific energy (energy per unit rest mass)[16]
 

Substituting   and   into   yields the radial equation

 

Multiplying under the integral sign by   yields the orbital equation

 

The total time dilation between the test-particle and an observer at infinity is

 

The first derivatives   and the contravariant components of the local 3-velocity   are related by

 
which gives the initial conditions
 
 

The specific orbital energy

 
and the specific relative angular momentum
 
of the test-particle are conserved quantities of motion.   and   are the radial and transverse components of the local velocity-vector. The local velocity is therefore
 

Alternative formulation of metric edit

The metric can be expressed in Kerr–Schild form like this:

 

Notice that k is a unit vector. Here M is the constant mass of the object, Q is the constant charge of the object, and η is the Minkowski tensor.

Quantum gravitational corrections to the metric edit

In certain approaches to quantum gravity, the classical Reissner–Nordström metric receives quantum corrections. An example of this is given by the effective field theory approach pioneered by Barvinsky and Vilkovisky.[17][18][19][20] At second order in curvature, the classical Einstein-Hilbert action is supplemented by local and non-local terms:

 

(  cancels with   and   cancels out with  .)

where   is an energy scale. The exact values of the coefficients   are unknown, as they depend on the nature of the ultra-violet theory of quantum gravity. On the other hand, the coefficients   are calculable.[21] The operator   has the integral representation

 

The new additional terms in the action imply a modification of the classical solution. The quantum corrected Reissner–Nordström metric, up to order  , was found by Campos Delgado:[22]

 

where

 
 

See also edit

Notes edit

  1. ^ Reissner, H. (1916). "Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie". Annalen der Physik (in German). 50 (9): 106–120. Bibcode:1916AnP...355..106R. doi:10.1002/andp.19163550905.
  2. ^ Weyl, H. (1917). "Zur Gravitationstheorie". Annalen der Physik (in German). 54 (18): 117–145. Bibcode:1917AnP...359..117W. doi:10.1002/andp.19173591804.
  3. ^ Nordström, G. (1918). "On the Energy of the Gravitational Field in Einstein's Theory". Verhandl. Koninkl. Ned. Akad. Wetenschap., Afdel. Natuurk., Amsterdam. 26: 1201–1208. Bibcode:1918KNAB...20.1238N.
  4. ^ Jeffery, G. B. (1921). "The field of an electron on Einstein's theory of gravitation". Proc. R. Soc. Lond. A. 99 (697): 123–134. Bibcode:1921RSPSA..99..123J. doi:10.1098/rspa.1921.0028.
  5. ^ Big Think
  6. ^ Thibault Damour: Black Holes: Energetics and Thermodynamics, S. 11 ff.
  7. ^ Ashgar Quadir: The Reissner Nordström Repulsion
  8. ^ Chandrasekhar, S. (1998). The Mathematical Theory of Black Holes (Reprinted ed.). Oxford University Press. p. 205. ISBN 0-19850370-9. Archived from the original on 29 April 2013. Retrieved 13 May 2013. And finally, the fact that the Reissner–Nordström solution has two horizons, an external event horizon and an internal 'Cauchy horizon,' provides a convenient bridge to the study of the Kerr solution in the subsequent chapters.
  9. ^ Andrew Hamilton: The Reissner Nordström Geometry (Casa Colorado)
  10. ^ Carter, Brandon. Global Structure of the Kerr Family of Gravitational Fields Archived 2020-06-22 at the Wayback Machine, Physical Review, page 174
  11. ^ Leonard Susskind: The Theoretical Minimum: Geodesics and Gravity, (General Relativity Lecture 4, timestamp: 34m18s)
  12. ^ Eva Hackmann, Hongxiao Xu: Charged particle motion in Kerr–Newmann space-times
  13. ^ Wald, General Relativity
  14. ^ Nordebo, Jonatan. "The Reissner-Nordström metric" (PDF). diva-portal. Retrieved 8 April 2021.
  15. ^ Smith, B. R. Jr. (2009). "First order partial differential equations in classical dynamics". Am. J. Phys. 77 (12): 1147–1153. Bibcode:2009AmJPh..77.1147S. doi:10.1119/1.3223358.
  16. ^ Misner, C. W.; et al. (1973). Gravitation. W. H. Freeman Co. pp. 656–658. ISBN 0-7167-0344-0.
  17. ^ Barvinsky, Vilkovisky, A.O, G.A (1983). "The generalized Schwinger-DeWitt technique and the unique effective action in quantum gravity". Phys. Lett. B. 131 (4–6): 313–318. Bibcode:1983PhLB..131..313B. doi:10.1016/0370-2693(83)90506-3.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. ^ Barvinsky, Vilkovisky, A.O, G.A (1985). "The Generalized Schwinger-DeWitt Technique in Gauge Theories and Quantum Gravity". Phys. Rep. 119 (1): 1–74. Bibcode:1985PhR...119....1B. doi:10.1016/0370-1573(85)90148-6.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. ^ Barvinsky, Vilkovisky, A.O, G.A (1987). "Beyond the Schwinger-Dewitt Technique: Converting Loops Into Trees and In-In Currents". Nucl. Phys. B. 282: 163–188. Bibcode:1987NuPhB.282..163B. doi:10.1016/0550-3213(87)90681-X.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. ^ Barvinsky, Vilkovisky, A.O, G.A (1990). "Covariant perturbation theory. 2: Second order in the curvature. General algorithms". Nucl. Phys. B. 333: 471–511. doi:10.1016/0550-3213(90)90047-H.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ Donoghue, John F. (2014). "Nonlocal quantum effects in cosmology: Quantum memory, nonlocal FLRW equations, and singularity avoidance". Phys. Rev. D. 89 (10): 10. arXiv:1402.3252. Bibcode:2014PhRvD..89j4062D. doi:10.1103/PhysRevD.89.104062. S2CID 119110865.
  22. ^ Campos Delgado, Ruben (2022). "Quantum gravitational corrections to the entropy of a Reissner-Nordström black hole". Eur. Phys. J. C. 82 (3): 272. arXiv:2201.08293. Bibcode:2022EPJC...82..272C. doi:10.1140/epjc/s10052-022-10232-0. S2CID 247824137.

References edit

External links edit