Rectified Gaussian distribution

In probability theory, the rectified Gaussian distribution is a modification of the Gaussian distribution when its negative elements are reset to 0 (analogous to an electronic rectifier). It is essentially a mixture of a discrete distribution (constant 0) and a continuous distribution (a truncated Gaussian distribution with interval ) as a result of censoring.

Density functionEdit

The probability density function of a rectified Gaussian distribution, for which random variables X having this distribution, derived from the normal distribution   are displayed as  , is given by

 
 
A comparison of Gaussian distribution, rectified Gaussian distribution, and truncated Gaussian distribution.

Here,   is the cumulative distribution function (cdf) of the standard normal distribution:

 

  is the Dirac delta function

 

and,   is the unit step function:

 

Mean and varianceEdit

Since the unrectified normal distribution has mean   and since in transforming it to the rectified distribution some probability mass has been shifted to a higher value (from negative values to 0), the mean of the rectified distribution is greater than  

Since the rectified distribution is formed by moving some of the probability mass toward the rest of the probability mass, the rectification is a mean-preserving contraction combined with a mean-changing rigid shift of the distribution, and thus the variance is decreased; therefore the variance of the rectified distribution is less than  

Generating valuesEdit

To generate values computationally, one can use

 

and then

 

ApplicationEdit

A rectified Gaussian distribution is semi-conjugate to the Gaussian likelihood, and it has been recently applied to factor analysis, or particularly, (non-negative) rectified factor analysis. Harva[1] proposed a variational learning algorithm for the rectified factor model, where the factors follow a mixture of rectified Gaussian; and later Meng[2] proposed an infinite rectified factor model coupled with its Gibbs sampling solution, where the factors follow a Dirichlet process mixture of rectified Gaussian distribution, and applied it in computational biology for reconstruction of gene regulatory networks.

Extension to general boundsEdit

An extension to the rectified Gaussian distribution was proposed by Palmer et al.,[3] allowing rectification between arbitrary lower and upper bounds. For lower and upper bounds   and   respectively, the cdf,   is given by:

 

where   is the cdf of a normal distribution with mean   and variance  . The mean and variance of the rectified distribution is calculated by first transforming the constraints to be acting on a standard normal distribution:

 

Using the transformed constraints, the mean and variance,   and   respectively, are then given by:

 
 
 
 

where erf is the error function. This distribution was used by Palmer et al. for modelling physical resource levels, such as the quantity of liquid in a vessel, which is bounded by both 0 and the capacity of the vessel.

See alsoEdit

ReferencesEdit

  1. ^ Harva, M.; Kaban, A. (2007). "Variational learning for rectified factor analysis☆". Signal Processing. 87 (3): 509. doi:10.1016/j.sigpro.2006.06.006.
  2. ^ Meng, Jia; Zhang, Jianqiu (Michelle); Chen, Yidong; Huang, Yufei (2011). "Bayesian non-negative factor analysis for reconstructing transcription factor mediated regulatory networks". Proteome Science. 9 (Suppl 1): S9. doi:10.1186/1477-5956-9-S1-S9. ISSN 1477-5956. PMC 3289087.
  3. ^ Palmer, Andrew W.; Hill, Andrew J.; Scheding, Steven J. (2017). "Methods for Stochastic Collection and Replenishment (SCAR) optimisation for persistent autonomy". Robotics and Autonomous Systems. 87: 51–65. doi:10.1016/j.robot.2016.09.011.