Open main menu

Radical of an ideal

  (Redirected from Radical ideal)

In commutative ring theory, a branch of mathematics, the radical of an ideal I is an ideal such that an element x is in the radical if and only if some power of x is in I. (Taking the radical is called radicalization.) A radical ideal (or semiprime ideal) is an ideal that is equal to its own radical. The radical of a primary ideal is a prime ideal.

This concept is generalized to noncommutative rings in the Semiprime ring article.



The radical of an ideal I in a commutative ring R, denoted by Rad(I) or  , is defined as


(Note that  .) Intuitively,   is obtained by taking all roots of elements of I within the ring R. Equivalently,   is the pre-image of the ideal of nilpotent elements (the nilradical) in the quotient ring  . The latter shows   is itself an ideal.[Note 1]

If the radical of I is finitely generated, then some power of   is contained in I.[1] In particular, If I and J are ideals of a noetherian ring, then I and J have the same radical if and only if I contains some power of J and J contains some power of I.

If an ideal I coincides with its own radical, then I is called a radical ideal or semiprime ideal.


Consider the ring Z of integers.

  1. The radical of the ideal 4Z of integer multiples of 4 is 2Z.
  2. The radical of 5Z is 5Z.
  3. The radical of 12Z is 6Z.
  4. In general, the radical of mZ is rZ, where r is the product of all distinct prime factors of m, the largest square-free factor of m (see radical of an integer). In fact, this generalizes to an arbitrary ideal (see the Properties section).

Consider the ideal I = (y4) ⊂ C[x,y]. It is not difficult to show   = (y) directly, but we give some alternative methods. The radical   corresponds to the nilradical   of the quotient ring  , which is the intersection of all prime ideals of the quotient ring. This is contained in the Jacobson radical, which is the intersection of all maximal ideals, which are the kernels of homomorphisms to fields. Any ring morphism   must have   in the kernel in order to have a well-defined morphism (if we said, for example, that the kernel should be   the composition of   would be   which is the same as trying to force  ). Since   is algebraically closed, every morphism   must factor through  , so we only have the compute the intersection of   to compute the radical of  . We then find that  .


This section will continue the convention that I is an ideal of a commutative ring R:

  • It is always true that  ; that is, radicalization is an idempotent operation. Moreover,   is the smallest radical ideal containing I.
  • Rad(I) is the intersection of all the prime ideals of R that contain I. Proof: On one hand, every prime ideal is radical, and so this intersection contains Rad(I). Suppose r is an element of R which is not in Rad(I), and let S be the set {rn|n is a nonnegative integer}. By the definition of Rad(I), S must be disjoint from I. S is also multiplicatively closed. Thus, by a variant of Krull's theorem, there exists a prime ideal P that contains I and is still disjoint from S. (see prime ideal.) Since P contains I, but not r, this shows that r is not in the intersection of prime ideals containing I. This finishes the proof. The statement may be strengthened a bit: the radical of I is the intersection of all prime ideals of R that are minimal among those containing I.
  • Specializing the last point, the nilradical (the set of all nilpotent elements) is equal to the intersection of all prime ideals of R.
  • An ideal I in a ring R is radical if and only if the quotient ring R/I is reduced.
  • The radical of a homogeneous ideal is homogeneous.
  • The radical of an intersection of ideals is equal to the intersection of their radicals:  .
  • The radical of a primary ideal is prime. If the radical of an ideal I is maximal, then I is primary.[2]
  • If I is an ideal,  . A prime ideal is a radical ideal. So   for any prime ideal P.
  • Let I, J be ideals of a ring R. If   are comaximal, then   are comaximal.[3]
  • Let M be a finitely generated module over a noetherian ring R. Then

where   is the support of M and   is the set of associated primes of M.


The primary motivation in studying radicals is Hilbert's Nullstellensatz in commutative algebra. One version of this celebrated theorem states that for any ideal J in the polynomial ring   over an algebraically closed field k, one has






Geometrically, this says that if a variety S is cut out by the polynomial equations  , then the only other polynomials which vanish on S are those in the radical of the ideal  .

Another way of putting it: The composition   on the set of ideals of a ring is a closure operator.

See alsoEdit


  1. ^ Here is a direct proof. Start with a, b  with some powers an, bmI. To show that a+b , we use the binomial theorem (which holds for any commutative ring):
    For each i, we have either in or n+m−1−im. Thus, in each term aibn+m−1−i, one of the exponents will be large enough to make that factor lie in I. Since any element of I times an element of R lies in I (as I is an ideal), this term lies in I. Hence (a+b)n+m−1I, and a+b . To finish checking that the radical is an ideal, take a  with anI, and any rR. Then (ra)n = rnanI, so ra . Thus the radical is an ideal.


  1. ^ Atiyah–MacDonald 1969, Proposition 7.14
  2. ^ Atiyah–MacDonald 1969, Proposition 4.2
  3. ^ Proof:   implies  .
  4. ^ Lang 2002, Ch X, Proposition 2.10