Open main menu

Wikipedia β

Pivalic acid is a carboxylic acid with a molecular formula of (CH3)3CCO2H. This colourless, odiferous organic compound is solid at room temperature. A common abbreviation for pivalyl (t-BuC(O)) is Piv and for pivalic acid (t-BuC(O)OH) is PivOH.

Pivalic acid
Pivalic acid.svg
Preferred IUPAC name
2,2-Dimethylpropanoic acid
Other names
Pivalic acid
Dimethylpropanoic acid
Neopentanoic acid
Trimethylacetic acid
3D model (JSmol)
ECHA InfoCard 100.000.839
Molar mass 102.13 g·mol−1
Density 0.905 g/cm3
Melting point 35 °C (95 °F; 308 K)
Boiling point 163.7 °C (326.7 °F; 436.8 K)
Related compounds
Related compounds
neopentyl alcohol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references



Industrial routeEdit

Pivalic acid is prepared by hydrocarboxylation of isobutene via the Koch reaction:

(CH3)2C=CH2 + CO + H2O → (CH3)3CCO2H

Such reactions require an acid catalyst such as hydrogen fluoride. tert-Butyl alcohol and isobutyl alcohol can also be used in place of isobutene. Globally, several million kilograms are produced annually.[1] Pivalic acid is also economically recovered as a by-product from the production of semi-synthetic penicillins like ampicillin and amoxycillin.

Laboratory methodsEdit

It was originally prepared by the oxidation of pinacolone with chromic acid[2] and by the hydrolysis of tert-butyl cyanide.[3] Convenient laboratory routes proceed via tert-butyl chloride via carbonation of the Grignard reagent[4] and by oxidation of pinacolone.[5]

t-Butylmagnesium bromide reacts with CO2 to form Pivalate then acid deesterified to Pivalin acid


Relative to esters of most carboxylic acids, esters of pivalic acid are unusually resistant to hydrolysis. Some applications result from this thermal stability. Polymers derived from pivalate esters of vinyl alcohol are highly reflective lacquers. The pivaloyl (abbreviated piv or pv) group is a protective group for alcohols in organic synthesis. Pivalic acid is sometimes used as an internal chemical shift standard for NMR spectra of aqueous solutions. While DSS is more commonly used for this purpose, the minor peaks from protons on the three methylene bridges in DSS can be problematic. The 1H NMR spectrum at 25 °C and neutral pH is a singlet at 1.08 ppm.

Alcohol protectionEdit

The pivaloyl group is used as a protecting group in organic synthesis. Common protection methods include treatment of alcohol with pivaloyl chloride (PvCl) in presence of pyridine.[6]

Alternatively, the esters can be prepared using pivaloic anhydride in the presence of scandium triflate (Sc(OTf)3) or vanadyl triflate (VO(OTf)2).

Common deprotection methods involve hydrolysis with a base or other nucleophiles.[7][8][9][10]


  1. ^ Riemenschneider, Wilhelm (2000). "Carboxylic Acids, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a05_235. ISBN 3527306730. 
  2. ^ Friedel and Silva, Ber. 6, 146, 826 (1873).[full citation needed]
  3. ^ Butlerow, Ann. 165, 322 (1873).[full citation needed]
  4. ^ S. V. Puntambeker, E. A. Zoellner, L. T. Sandborn, and E. W. Bousquet (1941). "Trimethylacetic acid from tert.- Butyl Chloride". Organic Syntheses. doi:10.15227/orgsyn.008.0104.  ; Collective Volume, 1, p. 524 
  5. ^ L. T. Sandborn and E. W. Bousquet (1941). "Trimethylacetic acid from Pinacolone". Organic Syntheses. doi:10.15227/orgsyn.008.0104. ; Collective Volume, 1, p. 524 
  6. ^ Robins, Morris J.; Hawrelak, S. D.; Kanai, Tadashi; Siefert, Jan Marcus; Mengel, Rudolf (1979). "Nucleic acid related compounds. 30. Transformations of adenosine to the first 2',3'-aziridine-fused nucleosides, 9-(2,3-epimino-2,3-dideoxy-.beta.-D-ribofuranosyl)adenine and 9-(2,3-epimino-2,3-dideoxy-.beta.-D-lyxofuranosyl)adenine". The Journal of Organic Chemistry. 44 (8): 1317–22. doi:10.1021/jo01322a026. 
  7. ^ Van Boeckel, C.A.A.; Van Boom, J.H. (1979). "Synthesis of glucosylphosphatidylglycerol via a phosphotriester intermediate". Tetrahedron Letters. 20 (37): 3561–4. doi:10.1016/S0040-4039(01)95462-0. 
  8. ^ Griffin, B.E.; Jarman, M.; Reese, C.B. (1968). "The Synthesis of oligoribonucleotides—IV". Tetrahedron. 24 (2): 639–62. doi:10.1016/0040-4020(68)88015-9. PMID 5637486. 
  9. ^ Ogilvie, Kelvin K.; Iwacha, Donald J. (1973). "Use of the tert-butyldimethylsilyl group for protecting the hydroxyl functions of nucleosides". Tetrahedron Letters. 14 (4): 317–9. doi:10.1016/S0040-4039(01)95650-3. 
  10. ^ Paquette, Leo A.; Collado, Iván; Purdie, Mark (1998). "Total Synthesis of Spinosyn A. 2. Degradation Studies Involving the Pure Factor and Its Complete Reconstitution". Journal of the American Chemical Society. 120 (11): 2553–62. doi:10.1021/ja974010k. INIST:10388970.