Phase separation

Phase separation is the creation of two distinct phases from a single homogeneous mixture.[1] The most common type of phase separation is between two immiscible liquids, such as oil and water. Colloids are formed by phase separation, though not all phase separations forms colloids - for example oil and water can form separated layers under gravity rather than remaining as microscopic droplets in suspension.

Mixing of liquids A and B and subsequent phase separation
When mixed, oil and vinegar will phase-separate
A phase diagram for two isotopes of helium, showing at bottom a range of temperatures and ratios at which they will phase-separate.

Phase separation in cold gasesEdit

A mixture of two helium isotopes (helium-3 and helium-4) in a certain range of temperatures and concentrations separates into parts. The initial mix of the two isotopes spontaneously separates into  -rich and  -rich regions.[2] Phase separation also exists in ultracold gas systems.[3] It has been shown experimentally in a two-component ultracold Fermi gas case.[4][5] The phase separation can compete with other phenomena as vortex lattice formation or an exotic Fulde-Ferrell-Larkin-Ovchinnikov phase.[6]

See alsoEdit


  1. ^ Nic M, Jirat J, Kosata B (1997). "Phase separation". In McNaught AD, Wilkinson A, Jenkins A (eds.). IUPAC Compendium of Chemical Terminology (the "Gold Book") (2nd ed.). Oxford: Blackwell Scientific Publications. doi:10.1351/goldbook.P04534. ISBN 0-9678550-9-8.
  2. ^ Pobell, Frank (2007). Matter and methods at low temperatures (3rd rev. and expanded ed.). Berlin: Springer. ISBN 978-3-540-46356-6. OCLC 122268227.
  3. ^ Carlson, J.; Reddy, Sanjay (2005-08-02). "Asymmetric Two-Component Fermion Systems in Strong Coupling". Physical Review Letters. 95 (6): 060401. arXiv:cond-mat/0503256. Bibcode:2005PhRvL..95f0401C. doi:10.1103/PhysRevLett.95.060401. PMID 16090928. S2CID 448402.
  4. ^ Shin, Y.; Zwierlein, M. W.; Schunck, C. H.; Schirotzek, A.; Ketterle, W. (2006-07-18). "Observation of Phase Separation in a Strongly Interacting Imbalanced Fermi Gas". Physical Review Letters. 97 (3): 030401. arXiv:cond-mat/0606432. Bibcode:2006PhRvL..97c0401S. doi:10.1103/PhysRevLett.97.030401. PMID 16907486. S2CID 11323402.
  5. ^ Zwierlein, Martin W.; Schirotzek, André; Schunck, Christian H.; Ketterle, Wolfgang (2006-01-27). "Fermionic Superfluidity with Imbalanced Spin Populations". Science. 311 (5760): 492–496. arXiv:cond-mat/0511197. Bibcode:2006Sci...311..492Z. doi:10.1126/science.1122318. ISSN 0036-8075. PMID 16373535. S2CID 13801977.
  6. ^ Kopyciński, Jakub; Pudelko, Wojciech R.; Wlazłowski, Gabriel (2021-11-23). "Vortex lattice in spin-imbalanced unitary Fermi gas". Physical Review A. 104 (5): 053322. arXiv:2109.00427. Bibcode:2021PhRvA.104e3322K. doi:10.1103/PhysRevA.104.053322. S2CID 237372963.

Further readingEdit

  • Khabibullaev PK, Saidov A (April 2013). Phase Separation in Soft Matter Physics: Micellar Solutions, Microemulsions, Critical Phenomena. Berlin Heidelberg: Springer. ISBN 978-3-662-09278-1.