# Pfister's sixteen-square identity

In algebra, Pfister's sixteen-square identity is a non-bilinear identity of form

${\displaystyle (x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots +x_{16}^{2})\,(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+\cdots +y_{16}^{2})=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+\cdots +z_{16}^{2}}$

It was first proven to exist by H. Zassenhaus and W. Eichhorn in the 1960s,[1] and independently by Pfister[2] around the same time. There are several versions, a concise one of which is

${\displaystyle \,^{z_{1}={\color {blue}{x_{1}y_{1}-x_{2}y_{2}-x_{3}y_{3}-x_{4}y_{4}-x_{5}y_{5}-x_{6}y_{6}-x_{7}y_{7}-x_{8}y_{8}}}+u_{1}y_{9}-u_{2}y_{10}-u_{3}y_{11}-u_{4}y_{12}-u_{5}y_{13}-u_{6}y_{14}-u_{7}y_{15}-u_{8}y_{16}}}$
${\displaystyle \,^{z_{2}={\color {blue}{x_{2}y_{1}+x_{1}y_{2}+x_{4}y_{3}-x_{3}y_{4}+x_{6}y_{5}-x_{5}y_{6}-x_{8}y_{7}+x_{7}y_{8}}}+u_{2}y_{9}+u_{1}y_{10}+u_{4}y_{11}-u_{3}y_{12}+u_{6}y_{13}-u_{5}y_{14}-u_{8}y_{15}+u_{7}y_{16}}}$
${\displaystyle \,^{z_{3}={\color {blue}{x_{3}y_{1}-x_{4}y_{2}+x_{1}y_{3}+x_{2}y_{4}+x_{7}y_{5}+x_{8}y_{6}-x_{5}y_{7}-x_{6}y_{8}}}+u_{3}y_{9}-u_{4}y_{10}+u_{1}y_{11}+u_{2}y_{12}+u_{7}y_{13}+u_{8}y_{14}-u_{5}y_{15}-u_{6}y_{16}}}$
${\displaystyle \,^{z_{4}={\color {blue}{x_{4}y_{1}+x_{3}y_{2}-x_{2}y_{3}+x_{1}y_{4}+x_{8}y_{5}-x_{7}y_{6}+x_{6}y_{7}-x_{5}y_{8}}}+u_{4}y_{9}+u_{3}y_{10}-u_{2}y_{11}+u_{1}y_{12}+u_{8}y_{13}-u_{7}y_{14}+u_{6}y_{15}-u_{5}y_{16}}}$
${\displaystyle \,^{z_{5}={\color {blue}{x_{5}y_{1}-x_{6}y_{2}-x_{7}y_{3}-x_{8}y_{4}+x_{1}y_{5}+x_{2}y_{6}+x_{3}y_{7}+x_{4}y_{8}}}+u_{5}y_{9}-u_{6}y_{10}-u_{7}y_{11}-u_{8}y_{12}+u_{1}y_{13}+u_{2}y_{14}+u_{3}y_{15}+u_{4}y_{16}}}$
${\displaystyle \,^{z_{6}={\color {blue}{x_{6}y_{1}+x_{5}y_{2}-x_{8}y_{3}+x_{7}y_{4}-x_{2}y_{5}+x_{1}y_{6}-x_{4}y_{7}+x_{3}y_{8}}}+u_{6}y_{9}+u_{5}y_{10}-u_{8}y_{11}+u_{7}y_{12}-u_{2}y_{13}+u_{1}y_{14}-u_{4}y_{15}+u_{3}y_{16}}}$
${\displaystyle \,^{z_{7}={\color {blue}{x_{7}y_{1}+x_{8}y_{2}+x_{5}y_{3}-x_{6}y_{4}-x_{3}y_{5}+x_{4}y_{6}+x_{1}y_{7}-x_{2}y_{8}}}+u_{7}y_{9}+u_{8}y_{10}+u_{5}y_{11}-u_{6}y_{12}-u_{3}y_{13}+u_{4}y_{14}+u_{1}y_{15}-u_{2}y_{16}}}$
${\displaystyle \,^{z_{8}={\color {blue}{x_{8}y_{1}-x_{7}y_{2}+x_{6}y_{3}+x_{5}y_{4}-x_{4}y_{5}-x_{3}y_{6}+x_{2}y_{7}+x_{1}y_{8}}}+u_{8}y_{9}-u_{7}y_{10}+u_{6}y_{11}+u_{5}y_{12}-u_{4}y_{13}-u_{3}y_{14}+u_{2}y_{15}+u_{1}y_{16}}}$
${\displaystyle \,^{z_{9}=x_{9}y_{1}-x_{10}y_{2}-x_{11}y_{3}-x_{12}y_{4}-x_{13}y_{5}-x_{14}y_{6}-x_{15}y_{7}-x_{16}y_{8}+x_{1}y_{9}-x_{2}y_{10}-x_{3}y_{11}-x_{4}y_{12}-x_{5}y_{13}-x_{6}y_{14}-x_{7}y_{15}-x_{8}y_{16}}}$
${\displaystyle \,^{z_{10}=x_{10}y_{1}+x_{9}y_{2}+x_{12}y_{3}-x_{11}y_{4}+x_{14}y_{5}-x_{13}y_{6}-x_{16}y_{7}+x_{15}y_{8}+x_{2}y_{9}+x_{1}y_{10}+x_{4}y_{11}-x_{3}y_{12}+x_{6}y_{13}-x_{5}y_{14}-x_{8}y_{15}+x_{7}y_{16}}}$
${\displaystyle \,^{z_{11}=x_{11}y_{1}-x_{12}y_{2}+x_{9}y_{3}+x_{10}y_{4}+x_{15}y_{5}+x_{16}y_{6}-x_{13}y_{7}-x_{14}y_{8}+x_{3}y_{9}-x_{4}y_{10}+x_{1}y_{11}+x_{2}y_{12}+x_{7}y_{13}+x_{8}y_{14}-x_{5}y_{15}-x_{6}y_{16}}}$
${\displaystyle \,^{z_{12}=x_{12}y_{1}+x_{11}y_{2}-x_{10}y_{3}+x_{9}y_{4}+x_{16}y_{5}-x_{15}y_{6}+x_{14}y_{7}-x_{13}y_{8}+x_{4}y_{9}+x_{3}y_{10}-x_{2}y_{11}+x_{1}y_{12}+x_{8}y_{13}-x_{7}y_{14}+x_{6}y_{15}-x_{5}y_{16}}}$
${\displaystyle \,^{z_{13}=x_{13}y_{1}-x_{14}y_{2}-x_{15}y_{3}-x_{16}y_{4}+x_{9}y_{5}+x_{10}y_{6}+x_{11}y_{7}+x_{12}y_{8}+x_{5}y_{9}-x_{6}y_{10}-x_{7}y_{11}-x_{8}y_{12}+x_{1}y_{13}+x_{2}y_{14}+x_{3}y_{15}+x_{4}y_{16}}}$
${\displaystyle \,^{z_{14}=x_{14}y_{1}+x_{13}y_{2}-x_{16}y_{3}+x_{15}y_{4}-x_{10}y_{5}+x_{9}y_{6}-x_{12}y_{7}+x_{11}y_{8}+x_{6}y_{9}+x_{5}y_{10}-x_{8}y_{11}+x_{7}y_{12}-x_{2}y_{13}+x_{1}y_{14}-x_{4}y_{15}+x_{3}y_{16}}}$
${\displaystyle \,^{z_{15}=x_{15}y_{1}+x_{16}y_{2}+x_{13}y_{3}-x_{14}y_{4}-x_{11}y_{5}+x_{12}y_{6}+x_{9}y_{7}-x_{10}y_{8}+x_{7}y_{9}+x_{8}y_{10}+x_{5}y_{11}-x_{6}y_{12}-x_{3}y_{13}+x_{4}y_{14}+x_{1}y_{15}-x_{2}y_{16}}}$
${\displaystyle \,^{z_{16}=x_{16}y_{1}-x_{15}y_{2}+x_{14}y_{3}+x_{13}y_{4}-x_{12}y_{5}-x_{11}y_{6}+x_{10}y_{7}+x_{9}y_{8}+x_{8}y_{9}-x_{7}y_{10}+x_{6}y_{11}+x_{5}y_{12}-x_{4}y_{13}-x_{3}y_{14}+x_{2}y_{15}+x_{1}y_{16}}}$

If all ${\displaystyle x_{i}}$ and ${\displaystyle y_{i}}$ with ${\displaystyle i>8}$ are set equal to zero, then it reduces to Degen's eight-square identity (in blue). The ${\displaystyle u_{i}}$ are

${\displaystyle u_{1}={\tfrac {(ax_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2})x_{9}-2x_{1}(bx_{1}x_{9}+x_{2}x_{10}+x_{3}x_{11}+x_{4}x_{12}+x_{5}x_{13}+x_{6}x_{14}+x_{7}x_{15}+x_{8}x_{16})}{c}}}$
${\displaystyle u_{2}={\tfrac {(x_{1}^{2}+ax_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2})x_{10}-2x_{2}(x_{1}x_{9}+bx_{2}x_{10}+x_{3}x_{11}+x_{4}x_{12}+x_{5}x_{13}+x_{6}x_{14}+x_{7}x_{15}+x_{8}x_{16})}{c}}}$
${\displaystyle u_{3}={\tfrac {(x_{1}^{2}+x_{2}^{2}+ax_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2})x_{11}-2x_{3}(x_{1}x_{9}+x_{2}x_{10}+bx_{3}x_{11}+x_{4}x_{12}+x_{5}x_{13}+x_{6}x_{14}+x_{7}x_{15}+x_{8}x_{16})}{c}}}$
${\displaystyle u_{4}={\tfrac {(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+ax_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2})x_{12}-2x_{4}(x_{1}x_{9}+x_{2}x_{10}+x_{3}x_{11}+bx_{4}x_{12}+x_{5}x_{13}+x_{6}x_{14}+x_{7}x_{15}+x_{8}x_{16})}{c}}}$
${\displaystyle u_{5}={\tfrac {(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+ax_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2})x_{13}-2x_{5}(x_{1}x_{9}+x_{2}x_{10}+x_{3}x_{11}+x_{4}x_{12}+bx_{5}x_{13}+x_{6}x_{14}+x_{7}x_{15}+x_{8}x_{16})}{c}}}$
${\displaystyle u_{6}={\tfrac {(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+ax_{6}^{2}+x_{7}^{2}+x_{8}^{2})x_{14}-2x_{6}(x_{1}x_{9}+x_{2}x_{10}+x_{3}x_{11}+x_{4}x_{12}+x_{5}x_{13}+bx_{6}x_{14}+x_{7}x_{15}+x_{8}x_{16})}{c}}}$
${\displaystyle u_{7}={\tfrac {(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+ax_{7}^{2}+x_{8}^{2})x_{15}-2x_{7}(x_{1}x_{9}+x_{2}x_{10}+x_{3}x_{11}+x_{4}x_{12}+x_{5}x_{13}+x_{6}x_{14}+bx_{7}x_{15}+x_{8}x_{16})}{c}}}$
${\displaystyle u_{8}={\tfrac {(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+ax_{8}^{2})x_{16}-2x_{8}(x_{1}x_{9}+x_{2}x_{10}+x_{3}x_{11}+x_{4}x_{12}+x_{5}x_{13}+x_{6}x_{14}+x_{7}x_{15}+bx_{8}x_{16})}{c}}}$

and,

${\displaystyle a=-1,\;\;b=0,\;\;c=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2}\,.}$

The identity shows that, in general, the product of two sums of sixteen squares is the sum of sixteen rational squares. Incidentally, the ${\displaystyle u_{i}}$ also obey,

${\displaystyle u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+u_{4}^{2}+u_{5}^{2}+u_{6}^{2}+u_{7}^{2}+u_{8}^{2}=x_{9}^{2}+x_{10}^{2}+x_{11}^{2}+x_{12}^{2}+x_{13}^{2}+x_{14}^{2}+x_{15}^{2}+x_{16}^{2}}$

No sixteen-square identity exists involving only bilinear functions since Hurwitz's theorem states an identity of the form

${\displaystyle (x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots +x_{n}^{2})(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+\cdots +y_{n}^{2})=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+\cdots +z_{n}^{2}}$

with the ${\displaystyle z_{i}}$ bilinear functions of the ${\displaystyle x_{i}}$ and ${\displaystyle y_{i}}$ is possible only for n ∈ {1, 2, 4, 8} . However, the more general Pfister's theorem (1965) shows that if the ${\displaystyle z_{i}}$ are rational functions of one set of variables, hence has a denominator, then it is possible for all ${\displaystyle n=2^{m}}$.[3] There are also non-bilinear versions of Euler's four-square and Degen's eight-square identities.