Order-8-3 triangular honeycomb

Order-8-3 triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,8,3}
Coxeter diagrams
Cells {3,8}
Faces {3}
Edge figure {3}
Vertex figure {8,3}
Dual Self-dual
Coxeter group [3,8,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8-3 triangular honeycomb (or 3,8,3 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,8,3}.

Geometry edit

It has three order-8 triangular tiling {3,8} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many triangular tilings existing around each vertex in an octagonal tiling vertex figure.

 
Poincaré disk model

Related polytopes and honeycombs edit

It is a part of a sequence of regular honeycombs with order-8 triangular tiling cells: {3,8,p}.

It is a part of a sequence of regular honeycombs with octagonal tiling vertex figures: {p,8,3}.

It is a part of a sequence of self-dual regular honeycombs: {p,8,p}.

Order-8-4 triangular honeycomb edit

Order-8-4 triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,8,4}
Coxeter diagrams        
        =      
Cells {3,8}  
Faces {3}
Edge figure {4}
Vertex figure {8,4}  
r{8,8}  
Dual {4,8,3}
Coxeter group [3,8,4]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8-4 triangular honeycomb (or 3,8,4 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,8,4}.

It has four order-8 triangular tilings, {3,8}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-8 triangular tilings existing around each vertex in an order-4 hexagonal tiling vertex arrangement.

 
Poincaré disk model

It has a second construction as a uniform honeycomb, Schläfli symbol {3,81,1}, Coxeter diagram,      , with alternating types or colors of order-8 triangular tiling cells. In Coxeter notation the half symmetry is [3,8,4,1+] = [3,81,1].

Order-8-5 triangular honeycomb edit

Order-8-5 triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,8,5}
Coxeter diagrams        
Cells {3,8}  
Faces {3}
Edge figure {5}
Vertex figure {8,5}  
Dual {5,8,3}
Coxeter group [3,8,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8-3 triangular honeycomb (or 3,8,5 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,8,5}. It has five order-8 triangular tiling, {3,8}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-8 triangular tilings existing around each vertex in an order-5 octagonal tiling vertex figure.

 
Poincaré disk model

Order-8-6 triangular honeycomb edit

Order-8-6 triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,8,6}
{3,(8,3,8)}
Coxeter diagrams        
        =      
Cells {3,8}  
Faces {3}
Edge figure {6}
Vertex figure {8,6}  
{(8,3,8)}  
Dual {6,8,3}
Coxeter group [3,8,6]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8-6 triangular honeycomb (or 3,8,6 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,8,6}. It has infinitely many order-8 triangular tiling, {3,8}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-8 triangular tilings existing around each vertex in an order-6 octagonal tiling, {8,6}, vertex figure.

 
Poincaré disk model

Order-8-infinite triangular honeycomb edit

Order-8-infinite triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,8,∞}
{3,(8,∞,8)}
Coxeter diagrams        
        =       
Cells {3,8}  
Faces {3}
Edge figure {∞}
Vertex figure {8,∞}  
{(8,∞,8)}  
Dual {∞,8,3}
Coxeter group [∞,8,3]
[3,((8,∞,8))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8-infinite triangular honeycomb (or 3,8,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,8,∞}. It has infinitely many order-8 triangular tiling, {3,8}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-8 triangular tilings existing around each vertex in an infinite-order octagonal tiling, {8,∞}, vertex figure.

 
Poincaré disk model

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(8,∞,8)}, Coxeter diagram,         =       , with alternating types or colors of order-8 triangular tiling cells. In Coxeter notation the half symmetry is [3,8,∞,1+] = [3,((8,∞,8))].

Order-8-3 square honeycomb edit

Order-8-3 square honeycomb
Type Regular honeycomb
Schläfli symbol {4,8,3}
Coxeter diagram        
Cells {4,8}  
Faces {4}
Vertex figure {8,3}
Dual {3,8,4}
Coxeter group [4,8,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8-3 square honeycomb (or 4,8,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an octagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-8-3 square honeycomb is {4,8,3}, with three order-4 octagonal tilings meeting at each edge. The vertex figure of this honeycomb is an octagonal tiling, {8,3}.

 
Poincaré disk model

Order-8-3 pentagonal honeycomb edit

Order-8-3 pentagonal honeycomb
Type Regular honeycomb
Schläfli symbol {5,8,3}
Coxeter diagram        
Cells {5,8}  
Faces {5}
Vertex figure {8,3}
Dual {3,8,5}
Coxeter group [5,8,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8-3 pentagonal honeycomb (or 5,8,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-8 pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-6-3 pentagonal honeycomb is {5,8,3}, with three order-8 pentagonal tilings meeting at each edge. The vertex figure of this honeycomb is an octagonal tiling, {8,3}.

 
Poincaré disk model

Order-8-3 hexagonal honeycomb edit

Order-8-3 hexagonal honeycomb
Type Regular honeycomb
Schläfli symbol {6,8,3}
Coxeter diagram        
Cells {6,8}  
Faces {6}
Vertex figure {8,3}
Dual {3,8,6}
Coxeter group [6,8,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8-3 hexagonal honeycomb (or 6,8,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-6 hexagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-8-3 hexagonal honeycomb is {6,8,3}, with three order-5 hexagonal tilings meeting at each edge. The vertex figure of this honeycomb is an octagonal tiling, {8,3}.

 
Poincaré disk model

Order-8-3 apeirogonal honeycomb edit

Order-8-3 apeirogonal honeycomb
Type Regular honeycomb
Schläfli symbol {∞,8,3}
Coxeter diagram        
Cells {∞,8}  
Faces Apeirogon {∞}
Vertex figure {8,3}
Dual {3,8,∞}
Coxeter group [∞,8,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8-3 apeirogonal honeycomb (or ∞,8,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-8 apeirogonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the apeirogonal tiling honeycomb is {∞,8,3}, with three order-8 apeirogonal tilings meeting at each edge. The vertex figure of this honeycomb is an octagonal tiling, {8,3}.

The "ideal surface" projection below is a plane-at-infinity, in the Poincaré half-space model of H3. It shows an Apollonian gasket pattern of circles inside a largest circle.

 
Poincaré disk model

Order-8-4 square honeycomb edit

Order-8-4 square honeycomb
Type Regular honeycomb
Schläfli symbol {4,8,4}
Coxeter diagrams        
        =      
Cells {4,8}  
Faces {4}
Edge figure {4}
Vertex figure {8,4}
Dual self-dual
Coxeter group [4,8,4]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8-4 square honeycomb (or 4,8,4 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,8,4}.

All vertices are ultra-ideal (existing beyond the ideal boundary) with four order-5 square tilings existing around each edge and with an order-4 octagonal tiling vertex figure.

 
Poincaré disk model

Order-8-5 pentagonal honeycomb edit

Order-8-5 pentagonal honeycomb
Type Regular honeycomb
Schläfli symbol {5,8,5}
Coxeter diagrams        
Cells {5,8}  
Faces {5}
Edge figure {5}
Vertex figure {8,5}
Dual self-dual
Coxeter group [5,8,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8-5 pentagonal honeycomb (or 5,8,5 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {5,8,5}.

All vertices are ultra-ideal (existing beyond the ideal boundary) with five order-8 pentagonal tilings existing around each edge and with an order-5 pentagonal tiling vertex figure.

 
Poincaré disk model

Order-8-6 hexagonal honeycomb edit

Order-8-6 hexagonal honeycomb
Type Regular honeycomb
Schläfli symbols {6,8,6}
{6,(8,3,8)}
Coxeter diagrams        
        =      
Cells {6,8}  
Faces {6}
Edge figure {6}
Vertex figure {8,6}  
{(5,3,5)}  
Dual self-dual
Coxeter group [6,8,6]
[6,((8,3,8))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8-6 hexagonal honeycomb (or 6,8,6 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,8,6}. It has six order-8 hexagonal tilings, {6,8}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many hexagonal tilings existing around each vertex in an order-6 octagonal tiling vertex arrangement.

 
Poincaré disk model

It has a second construction as a uniform honeycomb, Schläfli symbol {6,(8,3,8)}, Coxeter diagram,      , with alternating types or colors of cells. In Coxeter notation the half symmetry is [6,8,6,1+] = [6,((8,3,8))].

Order-8-infinite apeirogonal honeycomb edit

Order-8-infinite apeirogonal honeycomb
Type Regular honeycomb
Schläfli symbols {∞,8,∞}
{∞,(8,∞,8)}
Coxeter diagrams        
             
Cells {∞,8}  
Faces {∞}
Edge figure {∞}
Vertex figure   {8,∞}
  {(8,∞,8)}
Dual self-dual
Coxeter group [∞,8,∞]
[∞,((8,∞,8))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8-infinite apeirogonal honeycomb (or ∞,8,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {∞,8,∞}. It has infinitely many order-8 apeirogonal tiling {∞,8} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-8 apeirogonal tilings existing around each vertex in an infinite-order octagonal tiling vertex figure.

 
Poincaré disk model

It has a second construction as a uniform honeycomb, Schläfli symbol {∞,(8,∞,8)}, Coxeter diagram,       , with alternating types or colors of cells.

See also edit

References edit

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I, II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
  • Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)

External links edit