Open main menu

DefinitionEdit

Riemannian manifoldEdit

Let   be a Riemannian manifold, and   a Riemannian submanifold. Define, for a given  , a vector   to be normal to   whenever   for all   (so that   is orthogonal to  ). The set   of all such   is then called the normal space to   at  .

Just as the total space of the tangent bundle to a manifold is constructed from all tangent spaces to the manifold, the total space of the normal bundle[1]   to   is defined as

 .

The conormal bundle is defined as the dual bundle to the normal bundle. It can be realised naturally as a sub-bundle of the cotangent bundle.

General definitionEdit

More abstractly, given an immersion   (for instance an embedding), one can define a normal bundle of N in M, by at each point of N, taking the quotient space of the tangent space on M by the tangent space on N. For a Riemannian manifold one can identify this quotient with the orthogonal complement, but in general one cannot (such a choice is equivalent to a section of the projection  ).

Thus the normal bundle is in general a quotient of the tangent bundle of the ambient space restricted to the subspace.

Formally, the normal bundle[2] to N in M is a quotient bundle of the tangent bundle on M: one has the short exact sequence of vector bundles on N:

 

where   is the restriction of the tangent bundle on M to N (properly, the pullback   of the tangent bundle on M to a vector bundle on N via the map  ). The fiber of the normal bundle   in   is referred to as the normal space at   (of   in  ).

Conormal bundleEdit

If   is a smooth submanifold of a manifold  , we can pick local coordinates   around   such that   is locally defined by  ; then with this choice of coordinates

 

and the ideal sheaf is locally generated by  . Therefore we can define a non-degenerate pairing

 

that induces an isomorphism of sheaves  . We can rephrase this fact by introducing the conormal bundle defined via the conormal exact sequence

 ,

then  , viz. the sections of the conormal bundle are the cotangent vectors to   vanishing on  .

When   is a point, then the ideal sheaf is the sheaf of smooth germs vanishing at   and the isomorphism reduces to the definition of the tangent space in terms of germs of smooth functions on  

 .

Stable normal bundleEdit

Abstract manifolds have a canonical tangent bundle, but do not have a normal bundle: only an embedding (or immersion) of a manifold in another yields a normal bundle. However, since every manifold can be embedded in  , by the Whitney embedding theorem, every manifold admits a normal bundle, given such an embedding.

There is in general no natural choice of embedding, but for a given M, any two embeddings in   for sufficiently large N are regular homotopic, and hence induce the same normal bundle. The resulting class of normal bundles (it is a class of bundles and not a specific bundle because N could vary) is called the stable normal bundle.

Dual to tangent bundleEdit

The normal bundle is dual to the tangent bundle in the sense of K-theory: by the above short exact sequence,

 

in the Grothendieck group. In case of an immersion in  , the tangent bundle of the ambient space is trivial (since   is contractible, hence parallelizable), so  , and thus  .

This is useful in the computation of characteristic classes, and allows one to prove lower bounds on immersibility and embeddability of manifolds in Euclidean space.

For symplectic manifoldsEdit

Suppose a manifold   is embedded in to a symplectic manifold  , such that the pullback of the symplectic form has constant rank on  . Then one can define the symplectic normal bundle to X as the vector bundle over X with fibres

 

where   denotes the embedding. Notice that the constant rank condition ensures that these normal spaces fit together to form a bundle. Furthermore, any fibre inherits the structure of a symplectic vector space.[3]

By Darboux's theorem, the constant rank embedding is locally determined by  . The isomorphism

 

of symplectic vector bundles over   implies that the symplectic normal bundle already determines the constant rank embedding locally. This feature is similar to the Riemannian case.

ReferencesEdit

  1. ^ John M. Lee, Riemannian Manifolds, An Introduction to Curvature, (1997) Springer-Verlag New York, Graduate Texts in Mathematics 176 ISBN 978-0-387-98271-7
  2. ^ Tammo tom Dieck, Algebraic Topology, (2010) EMS Textbooks in Mathematics ISBN 978-3-03719-048-7
  3. ^ Ralph Abraham and Jerrold E. Marsden, Foundations of Mechanics, (1978) Benjamin-Cummings, London ISBN 0-8053-0102-X