Neoaves

Neoaves is a clade that consists of all modern birds (Neornithes or Aves) with the exception of Paleognathae (ratites and kin) and Galloanserae (ducks, chickens and kin).[2] Almost 95% of the roughly 10,000 known species of modern birds belong to the Neoaves.[3]

Neoavians
Temporal range: Late CretaceousHolocene, 69–0 Ma [1]
Toulouse - Sturnus vulgaris - 2012-02-26 - 3.jpg
Common starling (Sturnus vulgaris)
Scientific classification e
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Infraclass: Neognathae
Clade: Neoaves
Sibley et al., 1988
Clades

The early diversification of the various neoavian groups occurred very rapidly around the Cretaceous–Paleogene extinction event,[4][5] and attempts to resolve their relationships with each other have resulted initially in much controversy.[6][7]

PhylogenyEdit

The early diversification of the various neoavian groups occurred very rapidly around the Cretaceous–Paleogene extinction event.[8] As a result of the rapid radiation attempts to resolve their relationships have produced conflicting results, some quite controversial, especially in the earlier studies.[9][10][11] Nevertheless, some recent large phylogenomic studies of Neoaves have led to much progress on defining orders and supraordinal groups within Neoaves, even though they have failed to come to a consensus on an overall high order topology of these groups.[12][13][14][11] A genomic study of 48 taxa by Jarvis et al. (2014) divided Neoaves into two main clades, Columbea and Passerea, but an analysis of 198 taxa by Prum et al. (2015) recovered different groupings for the earliest split in Neoaves.[12][13] A reanalysis with an extended dataset by Reddy et al. (2017) suggested this was due to the type of sequence data, with coding sequences favouring the Prum topology.[14] The disagreement on topology even with large phylogenomic studies led Suh (2016) to propose a hard polytomy of nine clades as the base of Neoaves.[15] An analysis by Houde et al. (2019) recovered Columbea and a reduced hard polytomy of six clades within Passerea.[16]

Nevertheless, these studies do agree on a number of supraorderal groups, which Reddy et al. (2017) dubbed the "magnificent seven", which together with three "orphaned orders" make up Neoaves.[14] Significantly, they both include a large waterbird clade (Aequornithes) and a large landbird clade (Telluraves). The groups defined by Reddy et al. (2017) are as follows:

  • The "magnificent seven" supraordinal clades:
  1. Telluraves (landbirds)
  2. Aequornithes (waterbirds)
  3. Eurypygimorphae (sunbittern, kagu and tropicbirds)
  4. Otidimorphae (turacos, bustards and cuckoos)
  5. Strisores (nightjars, swifts, hummingbirds and allies)
  6. Columbimorphae (mesites, sandgrouse and pigeons)
  7. Mirandornithes (flamingos and grebes)


The following cladogram illustrates the proposed relationships between all neoavian bird clades recovered by Kuhl, H. et al. (2020)[19]

Neoaves
Mirandornithes

Phoenicopteriformes (flamingos) 

Podicipediformes (grebes) 

Basal Landbirds
Gruimorphae

Gruiformes (rails and cranes) 

Charadriiformes (waders and relatives) 

Opisthocomiformes (hoatzin) 

Caprimulgiformes (swifts, hummingbirds, nightjars and allies) 

Columbaves

Otidiformes (bustards) 

Musophagiformes (turacos) 

Cuculiformes (cuckoos) 

Columbiformes (pigeons)  

Mesitornithiformes (mesites) 

Pterocliformes (sandgrouse) 

Ardeae
Eurypygimorphae

Phaethontiformes (tropicbirds) 

Eurypygiformes (sunbittern and kagu) 

Aequornithes

Gaviiformes(loons)

Austrodyptornithes

Procellariiformes (albatrosses and petrels)  

Sphenisciformes (penguins)  

Ciconiiformes (storks)  

Suliformes (boobies, cormorants, etc.)

Pelecaniformes (pelicans, herons & ibises)  

Telluraves
Afroaves
Accipitrimorphae

Cathartiformes (New World vultures) 

Accipitriformes (hawks and relatives) 

Strigiformes (owls) 

Coraciimorphae

Coliiformes (mouse birds)

Cavitaves

Leptosomiformes (cuckoo roller)

Picocoraciae

Trogoniformes (trogons and quetzals) 

Bucerotiformes (hornbills and relatives) 

Picodynastornithes

Coraciiformes (kingfishers and relatives) 

Piciformes (woodpeckers and relatives) 

Australaves

Cariamiformes (seriemas) 

Eufalconimorphae

Falconiformes (falcons) 

Psittacopasserae

Psittaciformes (parrots) 

Passeriformes (passerines) 

ReferencesEdit

  1. ^ Van Tuinen M. (2009) Birds (Aves). In The Timetree of Life, Hedges SB, Kumar S (eds). Oxford: Oxford University Press; 409–411.
  2. ^ a b Jarvis, E. D.; Mirarab, S.; Aberer, A. J.; Li, B.; Houde, P.; Li, C.; Ho, S. Y. W.; Faircloth, B. C.; Nabholz, B.; Howard, J. T.; Suh, A.; Weber, C. C.; da Fonseca, R. R.; Li, J.; Zhang, F.; Li, H.; Zhou, L.; Narula, N.; Liu, L.; Ganapathy, G.; Boussau, B.; Bayzid, M. S.; Zavidovych, V.; Subramanian, S.; Gabaldon, T.; Capella-Gutierrez, S.; Huerta-Cepas, J.; Rekepalli, B.; Munch, K.; Schierup, M.; Lindow, B.; Warren, W. C.; Ray, D.; Green, R. E.; Bruford, M. W.; Zhan, X.; Dixon, A.; Li, S.; Li, N.; Huang, Y.; Derryberry, E. P.; Bertelsen, M. F.; Sheldon, F. H.; Brumfield, R. T.; Mello, C. V.; Lovell, P. V.; Wirthlin, M.; Schneider, M. P. C.; Prosdocimi, F.; Samaniego, J. A.; Velazquez, A. M. V.; Alfaro-Nunez, A.; Campos, P. F.; Petersen, B.; Sicheritz-Ponten, T.; Pas, A.; Bailey, T.; Scofield, P.; Bunce, M.; Lambert, D. M.; Zhou, Q.; Perelman, P.; Driskell, A. C.; Shapiro, B.; Xiong, Z.; Zeng, Y.; Liu, S.; Li, Z.; Liu, B.; Wu, K.; Xiao, J.; Yinqi, X.; Zheng, Q.; Zhang, Y.; Yang, H.; Wang, J.; Smeds, L.; Rheindt, F. E.; Braun, M.; Fjeldsa, J.; Orlando, L.; Barker, F. K.; Jonsson, K. A.; Johnson, W.; Koepfli, K.-P.; O'Brien, S.; Haussler, D.; Ryder, O. A.; Rahbek, C.; Willerslev, E.; Graves, G. R.; Glenn, T. C.; McCormack, J.; Burt, D.; Ellegren, H.; Alstrom, P.; Edwards, S. V.; Stamatakis, A.; Mindell, D. P.; Cracraft, J.; Braun, E. L.; Warnow, T.; Jun, W.; Gilbert, M. T. P.; Zhang, G. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–1331. doi:10.1126/science.1253451. ISSN 0036-8075.
  3. ^ Ericson, Per G.P.; et al. (2006). "Diversification of Neoaves: integration of molecular sequence data and fossils" (PDF). Biology Letters. 2 (4): 543–547. doi:10.1098/rsbl.2006.0523. PMC 1834003. PMID 17148284. Archived from the original (PDF) on 2009-03-25. Retrieved 2019-08-29.
  4. ^ McCormack, J.E.; et al. (2013). "A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing". PLOS ONE. 8 (1): e54848. Bibcode:2013PLoSO...854848M. doi:10.1371/journal.pone.0054848. PMC 3558522. PMID 23382987.
  5. ^ Claramunt, S.; Cracraft, J. (2015). "A new time tree reveals Earth history's imprint on the evolution of modern birds". Sci Adv. 1 (11): e1501005. doi:10.1126/sciadv.1501005. PMC 4730849. PMID 26824065.
  6. ^ Mayr, G (2011). "Metaves, Mirandornithes, Strisores and other novelties - a critical review of the higher-level phylogeny of neornithine birds". J Zool Syst Evol Res. 49: 58–76. doi:10.1111/j.1439-0469.2010.00586.x.
  7. ^ Matzke, A. et al. (2012) Retroposon insertion patterns of neoavian birds: strong evidence for an extensive incomplete lineage sorting era Mol. Biol. Evol.
  8. ^ Claramunt, S.; Cracraft, J. (2015). "A new time tree reveals Earth history's imprint on the evolution of modern birds". Sci Adv. 1 (11): e1501005. doi:10.1126/sciadv.1501005. PMC 4730849. PMID 26824065.
  9. ^ Mayr, G (2011). "Metaves, Mirandornithes, Strisores and other novelties - a critical review of the higher-level phylogeny of neornithine birds". J Zool Syst Evol Res. 49: 58–76. doi:10.1111/j.1439-0469.2010.00586.x.
  10. ^ Matzke, A. et al. (2012) Retroposon insertion patterns of neoavian birds: strong evidence for an extensive incomplete lineage sorting era Mol. Biol. Evol.
  11. ^ a b Braun, Edward L.; Cracraft, Joel; Houde, Peter (2019). "Resolving the Avian Tree of Life from Top to Bottom: The Promise and Potential Boundaries of the Phylogenomic Era". Avian Genomics in Ecology and Evolution. pp. 151–210. doi:10.1007/978-3-030-16477-5_6. ISBN 978-3-030-16476-8.
  12. ^ a b Jarvis, E.D.; et al. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–1331. Bibcode:2014Sci...346.1320J. doi:10.1126/science.1253451. PMC 4405904. PMID 25504713.
  13. ^ a b Prum, Richard O.; Berv, Jacob S.; Dornburg, Alex; Field, Daniel J.; Townsend, Jeffrey P.; Lemmon, Emily Moriarty; Lemmon, Alan R. (2015). "A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing". Nature. 526 (7574): 569–573. doi:10.1038/nature15697. ISSN 0028-0836. PMID 26444237.
  14. ^ a b c d Reddy, Sushma; Kimball, Rebecca T.; Pandey, Akanksha; Hosner, Peter A.; Braun, Michael J.; Hackett, Shannon J.; Han, Kin-Lan; Harshman, John; Huddleston, Christopher J.; Kingston, Sarah; Marks, Ben D.; Miglia, Kathleen J.; Moore, William S.; Sheldon, Frederick H.; Witt, Christopher C.; Yuri, Tamaki; Braun, Edward L. (2017). "Why Do Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the Avian Tree of Life more than Taxon Sampling". Systematic Biology. 66 (5): 857–879. doi:10.1093/sysbio/syx041. ISSN 1063-5157. PMID 28369655.
  15. ^ a b Suh, Alexander (2016). "The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves". Zoologica Scripta. 45: 50–62. doi:10.1111/zsc.12213. ISSN 0300-3256.
  16. ^ a b Houde, Peter; Braun, Edward L.; Narula, Nitish; Minjares, Uriel; Mirarab, Siavash (2019). "Phylogenetic Signal of Indels and the Neoavian Radiation". Diversity. 11 (7): 108. doi:10.3390/d11070108. ISSN 1424-2818.
  17. ^ Prum, R.O.; et al. (2015). "A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing". Nature. 526: 569–573. doi:10.1038/nature15697. PMID 26444237.
  18. ^ Kuhl., H.; Frankl-Vilches, C.; Bakker, A.; Mayr, G.; Nikolaus, G.; Boerno, S. T.; Klages, S.; Timmermann, B.; Gahr, M. (2020). "An unbiased molecular approach using 3'UTRs resolves the avian family-level tree of life". Molecular Biology and Evolution: 143. doi:10.1093/molbev/msaa191.
  19. ^ H Kuhl, C Frankl-Vilches, A Bakker, G Mayr, G Nikolaus, S T Boerno, S Klages, B Timmermann, M Gahr (2020) An unbiased molecular approach using 3’UTRs resolves the avian family-level tree of life. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msaa191