Negativity (quantum mechanics)

In quantum mechanics, negativity is a measure of quantum entanglement which is easy to compute. It is a measure deriving from the PPT criterion for separability.[1] It has shown to be an entanglement monotone[2][3] and hence a proper measure of entanglement.

Definition edit

The negativity of a subsystem   can be defined in terms of a density matrix   as:

 

where:

  •   is the partial transpose of   with respect to subsystem  
  •   is the trace norm or the sum of the singular values of the operator  .

An alternative and equivalent definition is the absolute sum of the negative eigenvalues of  :

 

where   are all of the eigenvalues.

Properties edit

 
 

where   is an arbitrary LOCC operation over  

Logarithmic negativity edit

The logarithmic negativity is an entanglement measure which is easily computable and an upper bound to the distillable entanglement.[4] It is defined as

 

where   is the partial transpose operation and   denotes the trace norm.

It relates to the negativity as follows:[1]

 

Properties edit

The logarithmic negativity

  • can be zero even if the state is entangled (if the state is PPT entangled).
  • does not reduce to the entropy of entanglement on pure states like most other entanglement measures.
  • is additive on tensor products:  
  • is not asymptotically continuous. That means that for a sequence of bipartite Hilbert spaces   (typically with increasing dimension) we can have a sequence of quantum states   which converges to   (typically with increasing  ) in the trace distance, but the sequence   does not converge to  .
  • is an upper bound to the distillable entanglement

References edit

  • This page uses material from Quantiki licensed under GNU Free Documentation License 1.2
  1. ^ a b K. Zyczkowski; P. Horodecki; A. Sanpera; M. Lewenstein (1998). "Volume of the set of separable states". Phys. Rev. A. 58 (2): 883–92. arXiv:quant-ph/9804024. Bibcode:1998PhRvA..58..883Z. doi:10.1103/PhysRevA.58.883. S2CID 119391103.
  2. ^ J. Eisert (2001). Entanglement in quantum information theory (Thesis). University of Potsdam. arXiv:quant-ph/0610253. Bibcode:2006PhDT........59E.
  3. ^ G. Vidal; R. F. Werner (2002). "A computable measure of entanglement". Phys. Rev. A. 65 (3): 032314. arXiv:quant-ph/0102117. Bibcode:2002PhRvA..65c2314V. doi:10.1103/PhysRevA.65.032314. S2CID 32356668.
  4. ^ M. B. Plenio (2005). "The logarithmic negativity: A full entanglement monotone that is not convex". Phys. Rev. Lett. 95 (9): 090503. arXiv:quant-ph/0505071. Bibcode:2005PhRvL..95i0503P. doi:10.1103/PhysRevLett.95.090503. PMID 16197196. S2CID 20691213.