MAX IV Laboratory

MAX IV is a next-generation[3][4] synchrotron radiation facility in Lund, Sweden.[5] Its design[6][7] and planning has been carried out within the Swedish national laboratory, MAX-lab, which up until 2015 operated three accelerators for synchrotron radiation research: MAX I (550 MeV, opened 1986), MAX II (1,5 GeV, opened 1997) and MAX III (700 MeV, opened 2008). MAX-lab supported about 1000 users from over 30 countries annually. The facility operated 14 beamlines with a total of 19 independent experimental stations, supporting a wide range of experimental techniques such as macromolecular crystallography, electron spectroscopy, nanolithography and production of tagged photons for photo-nuclear experiments. The facility closed on 13 December (St Lucia dagen) 2015 in preparation for MAX IV.

Max IV–flygbild 06 september 2014-2.jpg
MAX IV aerial photo from 2014
General properties
Accelerator typeSynchrotron light source
Beam typeElectrons
Target typeLight source
Beam properties
Maximum energy3 GeV[1]
Maximum current500 mA[1]
Physical properties
Circumference528 metres (1,732 ft)[1]
LocationLund, Sweden
Coordinates55°43′37″N 13°13′59″E / 55.727°N 13.233°E / 55.727; 13.233Coordinates: 55°43′37″N 13°13′59″E / 55.727°N 13.233°E / 55.727; 13.233
InstitutionLund University
Dates of operation2016 - present[2]
Preceded byMAX III[2]
MAX IV in Lund nearing completion.

On 27 April 2009 the Swedish Ministry of Education and Research, Swedish Research Council, Lund University, Region Skåne and Vinnova, a Swedish government funding agency, decided to fund the research center.[8]

The new laboratories, including two storage rings and a full-energy linac is situated in Brunnshög in Lund North East. The inauguration of MAX IV took place 21 June 2016, on the day of summer solstice.[8] The larger of the two storage rings has a circumference of 528 meters, operates at 3 GeV energy, and has been optimized for high-brightness x-rays. The smaller storage ring (circumference 96 meters) is operated at 1.5 GeV energy and has been optimized for UV.[9] There are also plans for a future expansion of the facility that would add a free-electron laser (FEL) to the facility, but is yet to be funded.[8]

At this point the 3 GeV ring along with the first few beam-lines[10] has been opened for users to start their experiments. The smaller storage ring will not be opened for users until 2018.[11]

See alsoEdit


  1. ^ a b c "3 GeV storage ring". MAX IV. Retrieved 20 July 2022.
  2. ^ a b "History". MAX IV. Retrieved 20 July 2022.
  3. ^ Einfeld, Dieter (2 November 2014). "Multi-bend Achromat Lattices for Storage Ring Light Sources". Synchrotron Radiation News. 27 (6): 4–7. doi:10.1080/08940886.2014.970929. ISSN 0894-0886.
  4. ^ P.F., Tavares; S.C., Leemann; M., Sjöström; Å., Andersson (1 September 2014). "The MAX IV storage ring project". Journal of Synchrotron Radiation. 21 (5): 862–77. doi:10.1107/S1600577514011503. ISSN 1600-5775. PMC 4181638. PMID 25177978.
  5. ^ "Världens starkaste synkrotron invigs - Umeå universitet". (in Swedish). 21 June 2016. Archived from the original on 18 September 2016. Retrieved 27 May 2017.
  6. ^ M., Johansson; B., Anderberg; L.-J., Lindgren (1 September 2014). "Magnet design for a low-emittance storage ring". Journal of Synchrotron Radiation. 21 (5): 884–903. doi:10.1107/S160057751401666X. ISSN 1600-5775. PMC 4181640. PMID 25177980.
  7. ^ E., Al-Dmour; J., Ahlback; D., Einfeld; P.F., Fernandes Tavares; M., Grabski (1 September 2014). "Diffraction-limited storage-ring vacuum technology". Journal of Synchrotron Radiation. 21 (5): 878–83. doi:10.1107/S1600577514010480. ISSN 1600-5775. PMC 4181639. PMID 25177979.
  8. ^ a b c "History – MAX IV". Retrieved 27 May 2017.
  9. ^ "Accelerators – MAX IV". Retrieved 27 May 2017.
  10. ^ S., Urpelainen; C., Såthe; W., Grizolli; M., Agåker; A.R., Head; M., Andersson; S.-W., Huang; B.N., Jensen; E., Wallén (1 January 2017). "The SPECIES beamline at the MAX IV Laboratory: a facility for soft X-ray RIXS and APXPS". Journal of Synchrotron Radiation. 24 (1): 344–353. doi:10.1107/S1600577516019056. ISSN 1600-5775. PMC 5182029. PMID 28009577.
  11. ^ "1.5 GeV storage ring – MAX IV". Retrieved 9 May 2017.

External linksEdit