List of possible impact structures on Earth

This is a list of possible impact structures on Earth. More than 130 geophysical features on the surface of the Earth have been proposed as candidate sites for impact events by appearing several times in the literature and/or being endorsed by the Impact Field Studies Group (IFSG)[1] and/or Expert Database on Earth Impact Structures (EDEIS).[2] For the purposes of this list and the List of impact craters on Earth, the terminology of "confirmed" as defined by the Earth Impact Database (EID) is considered authoritative.[3]

Map all coordinates using: OpenStreetMap 
Download coordinates as: KML

List of possible impact structuresEdit

The following tables list geological features on Earth that some individuals have associated with impact events, but for which there is currently no confirming scientific evidence in the peer-reviewed literature. In order for a structure to be confirmed as an impact crater, it must meet a stringent set of well-established criteria. Some proposed impact structures are likely to eventually be confirmed, whereas others are likely to be shown to have been misidentified (see below). Recent extensive surveys have been done for Australian (2005),[4] African (2014),[5] and South American (2015)[6] craters, as well as those in the Arab world (2016).[7] A book review by A. Crósta and U. Reimold disputes some of the evidence presented for several of the South American structures.[8]

Name Location Diameter (km) Age (Ma) Notes Image Coordinates
38th Parallel structures United States (Missouri, etc.) 2-17 320 ± 10 [9] 37°30′N 88°18′W / 37.5°N 88.3°W / 37.5; -88.3 (Hicks Dome)
37°48′N 90°12′W / 37.8°N 90.2°W / 37.8; -90.2 (Avon crater)
37°48′N 91°24′W / 37.8°N 91.4°W / 37.8; -91.4 (Crooked Creek crater)
37°54′N 92°42′W / 37.9°N 92.7°W / 37.9; -92.7 (Decaturville crater)
37°42′N 92°24′W / 37.7°N 92.4°W / 37.7; -92.4 (Hazelgreen crater)
38°00′N 93°36′W / 38.0°N 93.6°W / 38.0; -93.6 (Weaubleau-Osceola structure)
37°42′N 95°42′W / 37.7°N 95.7°W / 37.7; -95.7 (Rose Dome)
Ak-Bura (Murgab) Tajikistan 0.080 0.0003
(1700 AD)
[10][11][12][13] 38°5′38.5″N 74°16′58″E / 38.094028°N 74.28278°E / 38.094028; 74.28278 (Ak-Bura)
Al Madafi Saudi Arabia 6 6-66 [14][15][16] 28°40′N 37°11′E / 28.67°N 37.18°E / 28.67; 37.18 (Al Madafi)
Alamo bolide impact United States (Nevada) 100 ± 40 367 [17][10][18][note 1] 37°19′N 116°11′W / 37.31°N 116.18°W / 37.31; -116.18 (Alamo)
Anéfis Mali 3.9 23? [21][10][22][23] 18°04′19″N 0°02′53″W / 18.072°N 0.048°W / 18.072; -0.048 (Anefis)
Aorounga Central Chad 11.6 <345 [24][25][26] 19°13′44″N 19°15′40″E / 19.229°N 19.261°E / 19.229; 19.261 (Aorounga center)
Arganaty Kazakhstan (Almaty region) 300 250 [27][28][29][note 1] 46°30′N 79°48′E / 46.5°N 79.8°E / 46.5; 79.8 (Arganaty)
Arlit Niger 10 ? [30][31][32] 21°21′11″N 9°08′42″E / 21.353°N 9.145°E / 21.353; 9.145 (Arlit)
Azuara Spain 35-40 30-40 [33] 41°07′N 0°13′W / 41.117°N 0.217°W / 41.117; -0.217 (Azuara)
Bajada del Diablo Argentina 40 0.45 ± 0.3 [34][35][36] 42°46′S 67°24′W / 42.767°S 67.400°W / -42.767; -67.400 (Bajada del Diablo)
Bajo Hondo Argentina (Buenos Aires Province) 3.9 <10 [37][38] 42°15′S 67°55′W / 42.250°S 67.917°W / -42.250; -67.917 (Bajo Hondo)
Bangui magnetic anomaly Central African Republic 600-800? >542 [39][5][40] 6°00′N 18°18′E / 6°N 18.3°E / 6; 18.3 (Bangui)
Bateke Plateau Gabon 7.1 <2.6 [41][42] 0°38′45″S 14°27′29″E / 0.64583°S 14.45806°E / -0.64583; 14.45806 (Bateke)
Bedout Australia (offshore) 250 250 [43][44][4] 18°S 119°E / 18°S 119°E / -18; 119 (Bedout)
Bee Bluff United States (Texas) 2.4 40? [45][46][47][note 1] 29°02′N 99°51′W / 29.03°N 99.85°W / 29.03; -99.85 (Bee Bluff)
Björkö Sweden (Björkö, Ekerö) 10 1200 [48][49] 59°18′N 17°36′E / 59.30°N 17.60°E / 59.30; 17.60 (Björkö)
Bloody Creek Canada (Nova Scotia) 40 ? [50] 44°45′N 65°14′W / 44.750°N 65.233°W / 44.750; -65.233 (Bloody Creek)
Bohemian crater Czech Republic 260-300 >700? [51][10][52][53] 50°00′N 14°42′E / 50.0°N 14.7°E / 50.0; 14.7 (Bohemian)
Bow City Canada (Alberta) 8 70 [54] 50°25′N 112°16′W / 50.417°N 112.267°W / 50.417; -112.267 (Bow City)
Bowers crater Antarctic Ocean (Ross Sea) 100 3-5 [55][56][57][58] 71°12′S 176°00′E / 71.2°S 176°E / -71.2; 176 (Bowers)
Brushy Creek Feature United States (Louisiana) 2.0 0.011–0.030 [59][60][61][62] 30°46′N 90°44′W / 30.76°N 90.73°W / 30.76; -90.73 (Brushy Creek Feature)
Burckle Indian Ocean 30? 3000 BC [63][64][65] 30°52′S 61°22′E / 30.86°S 61.36°E / -30.86; 61.36 (Burckle)
Catalina structures
(Navy, Catalina, Emery Knoll)
Pacific Ocean (NE) 12, 32, 37 16-18 [66][67][68] 32°55′N 118°05′W / 32.91°N 118.09°W / 32.91; -118.09 (Catalina)
Cerro do Jarau Brazil (Paraná) 10 117 [69][70][71] 30°12′S 56°32′W / 30.200°S 56.533°W / -30.200; -56.533 (Cerro)
Charity Shoal Canada (Ontario) 1.2 <470 [72][73][74][75] 44°2′15″N 76°29′37″W / 44.03750°N 76.49361°W / 44.03750; -76.49361 (Charity Shoal)
Corossol Canada (Quebec) 4 <470 [76][77][78][79] 50°03′N 66°23′W / 50.050°N 66.383°W / 50.050; -66.383 (Corossol)
Darwin Crater Tasmania 1.2 0.816 [80][note 1] 42°19′S 145°40′E / 42.317°S 145.667°E / -42.317; 145.667 (Darwin crater)
Decorah United States (Iowa) 5.6 470 [81][82][83] 43°18′50″N 91°46′20″W / 43.31389°N 91.77222°W / 43.31389; -91.77222 (Decorah)
Diamantina River ring feature Australia (Queensland) 120 300 [84][85] 22°09′S 141°54′E / 22.150°S 141.900°E / -22.150; 141.900 (Winton crustal anomaly)
Dumas magnetic anomaly Canada (Saskatchewan) 3.2 70 ± 5 [86][87] 49°55′N 102°07′W / 49.92°N 102.12°W / 49.92; -102.12 (Dumas)
Duolun China (Inner Mongolia) 120 ± 50 129 ± 3 [88][89] 42°3′N 116°15′E / 42.050°N 116.250°E / 42.050; 116.250 (Duolun)
El-Baz Egypt 4 ? [90][26][91] 24°12′N 26°24′E / 24.200°N 26.400°E / 24.200; 26.400 (El-Baz)
Eltanin Pacific Ocean (SE) 35? 2.5 [92][93][94][note 1] 57°47′S 90°47′W / 57.783°S 90.783°W / -57.783; -90.783 (Eltanin)
Faya Basin Chad 2 385 ± 15 [95][96] 18°10′N 19°34′E / 18.167°N 19.567°E / 18.167; 19.567 (Faya)
Falkland Plateau anomaly Atlantic Ocean
(near Falkland Islands)
250-300 250 [97][98][99][100][101] 51°S 62°W / 51°S 62°W / -51; -62 (Malvinas)
Fried Egg structure Atlantic Ocean (near Azores) 6 17 [102][103] 36°N 27°W / 36°N 27°W / 36; -27 (Fried Egg)
Garet El Lefet Libya 3 ? [104][105][106] 25°00′N 16°30′E / 25.0°N 16.5°E / 25.0; 16.5 ("Garet El Lefet")
Gatun structure (estructura de Gatún) Panama 3 20 [107][108][109] 09°05′58″N 79°47′22″W / 9.09944°N 79.78944°W / 9.09944; -79.78944 (Gatun structure)
General San Martín Argentina 11 1.2 [110][111][112] 38°0′S 63°18′W / 38.000°S 63.300°W / -38.000; -63.300 (General San Martin)
Gnargoo Australia (Western Australia) 75 <300 [113][114] 24°48′24″S 115°13′29″E / 24.80667°S 115.22472°E / -24.80667; 115.22472 (Gnargoo)
Guarda Portugal 30 200 [115][116][117] 40°38′N 07°06′W / 40.633°N 7.100°W / 40.633; -7.100 (Guarda)
Hartney anomaly Canada (Manitoba) 8 120 ± 20 [118][87][119] 49°24′N 100°40′W / 49.4°N 100.67°W / 49.4; -100.67 (Hartney)
Hiawatha Greenland 31 57.99 ± 0.54 [120][121][122] 78°44′N 66°14′W / 78.733°N 66.233°W / 78.733; -66.233 (Hiawatha)
Hickman Australia (Western Australia) 0.26 0.01–0.1 [123] 23°2′13″S 119°40′59″E / 23.03694°S 119.68306°E / -23.03694; 119.68306 (Hickman)
Hico United States (Texas) 9 <60 [124][125][126] 32°01′N 98°02′W / 32.01°N 98.03°W / 32.01; -98.03 (Hico)
Hotchkiss Canada (Alberta) 4 220 ± 100 [127][128] 57°32′20″N 118°52′41″W / 57.539°N 118.878°W / 57.539; -118.878 (Hotchkiss)
Howell United States (Tennessee) 2.5 380 ± 10 [129][130][131] 35°14′N 86°37′W / 35.23°N 86.61°W / 35.23; -86.61 (Howell)
Ibn-Batutah Libya 2.5 120 ± 20 [132][133] 21°34′10″N 20°50′15″E / 21.56944°N 20.83750°E / 21.56944; 20.83750 (Ibn-Batutah)
Ishim Kazakhstan (Akmola region) 300 430-460 [134][135][136][note 1] 52°0′N 69°0′E / 52.000°N 69.000°E / 52.000; 69.000 (Ishim Akmola)
Iturralde Bolivia 8.0 0.011–0.030 [137] 12°35′S 67°40′W / 12.583°S 67.667°W / -12.583; -67.667 (Iturralde)
Jackpine Creek magnetic anomaly Canada (British Columbia) 25 120 ± 20 [138][139] 55°36′N 120°06′W / 55.6°N 120.1°W / 55.6; -120.1 (Jackpine)
Jalapasquillo Puebla, Mexico 1.2 <10 [140][141] 19°13′23″N 97°25′44″W / 19.2231°N 97.429°W / 19.2231; -97.429 (Jalapasquillo)
Jebel Hadid Libya 4.7 <66 [142][143] 20°52′12″N 22°42′18″E / 20.87000°N 22.70500°E / 20.87000; 22.70500 (Jebel Hadid)
Jeptha Knob United States (Kentucky) 4.3 425 [144][note 1] 38°11′N 85°07′W / 38.183°N 85.117°W / 38.183; -85.117 (Jeptha Knob)
Johnsonville United States (South Carolina) 11 300? [145][10][146][note 1] 33°49′N 79°22′W / 33.817°N 79.367°W / 33.817; -79.367 (Snows Island)
Jwaneng South Botswana 1.3 <66 [147][148] 24°42′S 24°46′E / 24.700°S 24.767°E / -24.700; 24.767 (Jwaneng South)
Lonar lake Crater India 2.1 0.0040
(2000 BC)
[149][150] 23°42′17″N 69°15′37″E / 23.70472°N 69.26028°E / 23.70472; 69.26028 (Kachchh)
Kebira Egypt 31 100 [151][152] 24°40′N 24°58′E / 24.667°N 24.967°E / 24.667; 24.967 (Kebira)
Kilmichael United States (Mississippi) 13 45 [153][154][155][156] 33°30′N 89°33′W / 33.5°N 89.55°W / 33.5; -89.55 (Kilmichael)
Krk structure Croatia 12 40 [157][158] 45°04′N 14°37′E / 45.06°N 14.62°E / 45.06; 14.62 (Krk)
Kurai Basin Russia (Altai Region) 20 <200 [159][160] 50°12′N 87°54′E / 50.200°N 87.900°E / 50.200; 87.900 (Kurai)
La Dulce Argentina 2.8 0.445? [161][111] 38°13′S 59°13′W / 38.21°S 59.21°W / -38.21; -59.21 (La Dulce)
Labynkyr Russia 67 150? [162][10][163][164][note 1] 62°19′30″N 143°05′24″E / 62.325°N 143.090°E / 62.325; 143.090 (Labynkyr)
Lac Iro Chad 13 ? [165][5][166] 10°10′N 19°40′E / 10.167°N 19.667°E / 10.167; 19.667 (Iro Lake)
Lairg Gravity Low Scotland 40 1200 [167] 58°1′12″N, 4°24′0″W
Lake Cheko Russia (Siberia) 50 0.0001
(1908 AD)
[168] 60°57′50″N 101°51′36″E / 60.964°N 101.86°E / 60.964; 101.86 (Cheko)
Lake Tai (Tai Hu) China (Jiangsu) 70 ± 5 365 ± 5 [169][170][171] 31°14′N 120°8′E / 31.233°N 120.133°E / 31.233; 120.133 (Tai)
Loch Leven Scotland 18x8 290 [172][173] 56°12′N 3°23′W / 56.200°N 3.383°W / 56.200; -3.383 (Loch Leven)
Lorne Basin Australia (New South Wales) 30 250 ± 2 [174][175] 31°36′S 152°37′E / 31.60°S 152.62°E / -31.60; 152.62 (Lorne)
Lycksele structure 2 Sweden 130 1500 ± 300 [176][177][178] 64°55′N 18°47′E / 64.92°N 18.78°E / 64.92; 18.78 (Lycksele)
Madagascar structure 3 Madagascar 12 ? [179][180] 18°50′20″S 46°13′16″E / 18.839°S 46.221°E / -18.839; 46.221 (Madagascar)
Magyarmecske anomaly Hungary 7 299 [181][182][183][184] 45°57′N 17°58′E / 45.95°N 17.97°E / 45.95; 17.97 (Magyarmecske)
Mahuika New Zealand (offshore) 20? 0.0006
(1400 AD)
[185][186][64] 48°18′S 166°24′E / 48.3°S 166.4°E / -48.3; 166.4 (Mahuika)
Maniitsoq structure Greenland 100 3000 [187][188][189] 65°15′N 51°50′W / 65.250°N 51.833°W / 65.250; -51.833 (Maniitsoq)
Mejaouda (El Mrayer) Mauritania 3 <542? [190][10][106][22][191] 22°43′19″N 7°18′43″W / 22.722°N 7.312°W / 22.722; -7.312 (Mejaouda)
Merewether Canada (Newfoundland) 20 0.0009
(1100 AD)
[192][193][note 1] 58°02′N 64°03′W / 58.04°N 64.05°W / 58.04; -64.05 (Merewether)
Meseta de la Barda Negra Argentina 1.5 4 ± 1 [194][195] 39°10′S 69°53′W / 39.167°S 69.883°W / -39.167; -69.883 (Barda Negra)
Middle-Urals Ring Structure Russia 400–550 >542 [196][197][198] 56°N 56°E / 56°N 56°E / 56; 56 (Urals Ring)
Mistassini-Otish impact structure Canada (Quebec) 600 2200 [199][200] 50°34′N 73°25′W / 50.57°N 73.42°W / 50.57; -73.42 (Mistassini lake)
Mount Ashmore dome Indian Ocean (in Timor Sea) >50 35 [201][202][203] 12°33′S 123°12′E / 12.55°S 123.2°E / -12.55; 123.2
Mousso Chad 3.8 <542 [204][205] 17°58′N 19°53′E / 17.967°N 19.883°E / 17.967; 19.883 (Mousso)
Mt. Oikeyama Japan 90 0.030? [206][207] 35°24′18″N 138°00′47″E / 35.405°N 138.013°E / 35.405; 138.013 (Oikeyama)
Mulkarra Australia (South Australia) 17 105 [208][209] 27°51′S 138°55′E / 27.85°S 138.92°E / -27.85; 138.92 (Mulkarra)
Nastapoka (Hudson Bay) arc Canada (Quebec) 450 1800? [210][10][211][212] 57°00′N 78°50′W / 57.000°N 78.833°W / 57.000; -78.833 (Hudson Bay)
Ouro Ndia Mali 3 <2.6 [213][10][22] 14°59.8′N 4°30.0′W / 14.9967°N 4.5000°W / 14.9967; -4.5000 (Ouro Ndia)
Pantasma Nicaragua 10 ? [214] 13°22′N 85°57′W / 13.37°N 85.95°W / 13.37; -85.95 (Pantasma)
Panther Mountain United States (New York) 10 375 [215][216][217] 42°03′N 74°24′W / 42.050°N 74.400°W / 42.050; -74.400 (Panther Mountain)
Peerless structure United States (Montana) 6 470 ± 10 [218][219] 48°48′N 105°48′W / 48.8°N 105.8°W / 48.8; -105.8 (Peerless)
Piratininga Brazil (Paraná) 12 117 [220][70][221] 22°28′S 49°09′W / 22.467°S 49.150°W / -22.467; -49.150 (Piratininga)
Praia Grande Brazil (Santos Basin, offshore) 20 84 [222][70][71] 25°39′S 45°37′W / 25.650°S 45.617°W / -25.650; -45.617 (prai grande)
Ramgarh India (Rajasthan) 3 ? [223][224][225][note 1] 25°20′16″N 76°37′29″E / 25.33778°N 76.62472°E / 25.33778; 76.62472 (Ramgarh)
Ross Antarctic Ocean (Ross Sea) 600? <38 [226][56][227] 77°30′S 178°30′E / 77.5°S 178.5°E / -77.5; 178.5 (Ross)
Rubielos de la Cérida Spain 80x40 30-40 [228][229][230][note 1] 40°46′59″N 1°15′00″W / 40.783°N 1.25°W / 40.783; -1.25 (Rubielos)
Sakhalinka Pacific Ocean (NW) 12 70 [231][232][233][234][235] 30°15′N 170°03′E / 30.250°N 170.050°E / 30.250; 170.050 (Sakhalinka)
São Miguel do Tapuio Brazil (Piauí) 22 120 [236][10][71][237][238][239] 5°37.6′S 41°23.3′W / 5.6267°S 41.3883°W / -5.6267; -41.3883 (Sao Miguel Do Tapuio)
Shanghewan China (Jilin) 30 ? [240][241][242] 44°29′N 126°11′E / 44.483°N 126.183°E / 44.483; 126.183 (Shangewan)
Shiva Indian Ocean 500 66 [243] 18°40′N 70°14′E / 18.667°N 70.233°E / 18.667; 70.233 (Shiva)
Shiyli Kazakhstan 5.5 46 ± 7 [244][245][note 1] 49°10′N 57°51′E / 49.167°N 57.850°E / 49.167; 57.850 (Shiyli)
Silverpit Atlantic Ocean (North Sea) 20 60 ± 15 [246][247][248][249][250][251][252][253] 54°14′N 1°51′E / 54.233°N 1.850°E / 54.233; 1.850 (Silverpit)
Sirente Italy 10 0.0017
(320 ± 90 AD)
[254][255] 42°10′38″N 13°35′45″E / 42.17722°N 13.59583°E / 42.17722; 13.59583 (Sirente)
Sithylemenkat Lake United States (Alaska) 12 0.033? [256][257][258][259] 66°07′34″N 151°23′20″W / 66.12611°N 151.38889°W / 66.12611; -151.38889 (Sithylemenkat)
Smerdyacheye Lake Russia 20 0.01–0.03? [260][261]   55°44′06″N 39°49′23″E / 55.735°N 39.823°E / 55.735; 39.823 (Smerdyacheye)
Sudan 3 (Mahas) Sudan 2.8 ? [citation needed] 20°01.9′N 30°13.7′E / 20.0317°N 30.2283°E / 20.0317; 30.2283 (Mahas)
Sudan 2 (Bayuda) Sudan 10 ? [262][263][264]
 
 
Mahas
 
Bayuda
 
Red Sea Hills
Three craters in Sudan
18°03.5′N 33°30.2′E / 18.0583°N 33.5033°E / 18.0583; 33.5033 (Bayuda)
Sudan 1 (Red Sea Hills) Sudan 6 ? [265][266][267]
 
 
Mahas
 
Bayuda
 
Red Sea Hills
Three craters in Sudan
17°57.1′N 37°56.1′E / 17.9517°N 37.9350°E / 17.9517; 37.9350 (Red Sea)
Svetloyar Lake Russia 40 0.0026
(600 BC)
[268][269][note 1]   56°49′08″N 45°05′35″E / 56.819°N 45.093°E / 56.819; 45.093 (Svetloyar)
Takamatsu Japan 4-8 15 [270][271][272][273][274] 34°18′N 134°03′E / 34.3°N 134.05°E / 34.3; 134.05 (Takamatsu)
Tarek (Gilf Kebir) Egypt 2.1 112? [275][10][276][277] 24°36′04″N 27°12′18″E / 24.601°N 27.205°E / 24.601; 27.205 (Tarek)
Tatarsky North Pacific Ocean (NW) 14 ? [278][279] 49°57′35″N 141°23′40″E / 49.95972°N 141.39444°E / 49.95972; 141.39444 (Tatarsky1)
Tatarsky South Pacific Ocean (NW) 20 ? [280][279] 48°17′38″N 141°23′40″E / 48.29389°N 141.39444°E / 48.29389; 141.39444 (Tatarsky2)
Tefé River structure Brazil (Amazonas) 15 65 ± 20 [281][71][282] 4°57′S 66°03′W / 4.950°S 66.050°W / -4.950; -66.050 (Tefé)
Talundilly Australia (Queensland) 84 128 ± 5 [283][284][285] 24°44′S 144°37′E / 24.73°S 144.62°E / -24.73; 144.62 (Talundilly)
Temimichat Mauritania 0.7 2? [286][10][287] 24°15′N 9°39′W / 24.250°N 9.650°W / 24.250; -9.650 (Temimichat)
Tsenkher Mongolia 3.6 5 [288][289][290] 43°38′41″N 98°22′09″E / 43.64472°N 98.36917°E / 43.64472; 98.36917 (Tsenkher)
Toms Canyon United States (New Jersey) 22 35 [291][292][293][294] 39°08′N 72°51′W / 39.133°N 72.850°W / 39.133; -72.850 (Toms Canyon)
Ust-Kara Russia (Nenetsia, offshore) 25 70 ± 2.2 [295][296] 69°17′N 65°21′E / 69.28°N 65.35°E / 69.28; 65.35 (Ust-Kara)
Vélingara Senegal 48 23-40 [297][298] 13°02′N 14°08′W / 13.033°N 14.133°W / 13.033; -14.133 (Vélingara)
Versailles United States (Kentucky) 1.5 <400 [299][300] 38°05′N 84°40′W / 38.09°N 84.67°W / 38.09; -84.67 (Versailles)
Vichada Colombia (Vichada) 50 30? [301][10] 4°30′N 69°15′W / 4.500°N 69.250°W / 4.500; -69.250 (Vichada)
Victoria Island United States (California) 5.5 37-49 [302] 37°53′N 121°32′W / 37.89°N 121.53°W / 37.89; -121.53 (Victoria Island structure)
Warburton East Australia (South Australia) 200 300-360 [303][304][305] 28°00′S 140°30′E / 28°S 140.5°E / -28; 140.5 (Warbuton)
Warburton West Australia (South Australia) 200 300-360 [303][304][306]
Weaubleau (Weaubleau-Osceola) United States (Missouri) 19 330 ± 10 [307][308][309] 38°00′N 93°36′W / 38.0°N 93.6°W / 38.0; -93.6 (Weaubleau)
Wembo-Nyama (Omeonga) DR Congo 36-46 60? [310][311][312] 3°37′52″S 24°31′07″E / 3.63111°S 24.51861°E / -3.63111; 24.51861 (Wembo-Nyama ring structure)
Wilkes Land 2 Antarctica 480 250-500 [313] 70°S 140°E / 70°S 140°E / -70; 140 (Wilkes)
Woodbury United States (Georgia) 7 500 ± 100 [314][315] 32°55′N 84°33′W / 32.92°N 84.55°W / 32.92; -84.55 (Woodbury)
Yallalie Australia (Western Australia) 12 99? [316][10][317][318][319][320][note 1] 30°26′40″S 115°46′16″E / 30.44444°S 115.77111°E / -30.44444; 115.77111 (Yallalie)
Zerelia West Greece 20 0.0070
(5000 BC)
[321][322] 39°09′48″N 22°42′32″E / 39.16333°N 22.70889°E / 39.16333; 22.70889 (Zerelia West)
Zerelia East Greece 10 0.0070
(5000 BC)
[321][322] 39°09′43″N 22°42′51″E / 39.16194°N 22.71417°E / 39.16194; 22.71417 (Zerelia East)

OverviewEdit

Russia's Lake Cheko is thought by one research group to be the result of the famous Tunguska event, although sediments in the lake have been dated back more than 5,000 years. There is highly speculative conjecture about the supposed Sirente impact (c. 320 ± 90 AD) having caused the Roman emperor Constantine's vision at Milvian Bridge.[323][better source needed]

The Burckle crater and Umm al Binni structure are proposed to be behind the floods that affected Sumerian civilization.[324][325] The Kachchh impact may have been witnessed by the Harappan civilization and mentioned as a fireball in Sanskrit texts.[150]

Shortly after the Hiawatha Crater was discovered, researchers suggested that the impact could have occurred as late as ~12,800 years ago, leading some to associate it with the Younger Dryas impact hypothesis.[326] James Kennett, a leading advocate of the Younger Dryas impact hypothesis said, "I'd unequivocally predict that this crater is the same age as the Younger Dryas."[327]

These claims were criticised by other scholars. According to impact physicist Mark Boslough writing for Skeptical Inquirer the first reports of the impact released by science journalist Paul Voosen focused on this being a young crater which according to Boslough "set the tone for virtually all the media reporting to follow". Boslough argued, based on evidence and statistical probability, that once the crater has been drilled and researched "it will turn out to be much older." He complained that this important discovery "was tainted by connections to a widely discredited hypothesis and speculations that did not make it through peer review".[327][328]

A 2022 study using Argon–Argon dating of shocked zircon crystals in impact melt rocks found outwash less than 10 km downstream of the glacier pushed the estimate back to around 57.99 ± 0.54 million years ago, during the late Paleocene.[329][122] Confirmation would require drilling almost one km (3,300 ft) through the ice sheet above the crater to obtain a sample of dateable, solidified impact melt from the crater.

The age of the Bloody Creek crater[330] is uncertain.

As the trend in the Earth Impact Database for about 26 confirmed craters younger than a million years old shows that almost all are less than two km (1.2 mi) in diameter (except the three km (1.9 mi) Agoudal and four km (2.5 mi) Rio Cuarto), the suggestion that two large craters, Mahuika (20 km (12 mi)) and Burckle (30 km (19 mi)), formed only within the last few millennia has been met with skepticism.[331][332][333] However, the source of the young (less than a million years old) and enormous Australasian strewnfield (c. 790 ka) is suggested to be a crater about 100 km (62 mi) across somewhere in Indochina,[334][335] with Hartung and Koeberl (1994) proposing the elongated 100 km × 35 km (62 mi × 22 mi) Tonlé Sap lake in Cambodia (visible in the map at the side) as a suspect structure.[336]

The Decorah crater has been conjectured as being part of the Ordovician meteor event.[337][better source needed]

Several twin impacts have been proposed, such as the Rubielos de la Cérida and Azuara (30–40 Ma),[338] Cerro Jarau and Piratininga (c. 117 Ma),[70] and Warburton East and West (300–360 Ma).[339] However, adjacent craters may not necessarily have formed at the same time, as demonstrated by the case of the confirmed Clearwater East and West lakes.

Some confirmed impacts like Sudbury or Chicxulub are also sources of magnetic anomalies[340] and/or gravity anomalies. The magnetic anomalies Bangui and Jackpine Creek,[139] the gravity anomalies Wilkes Land crater and Falkland Islands,[341] and others have been considered as being of impact origin. Bangui apparently has been discredited,[26][342] but appears again in a 2014 table of unconfirmed structures in Africa by Reimold and Koeberl.[5]

Several anomalies in Williston Basin were identified by Swatzky in the 1970s as astroblemes including Viewfield, Red Wing Creek, Eagle Butte, Dumas, and Hartney, of which only the last two are unconfirmed.[87]

The Eltanin impact has been confirmed (via an iridium anomaly and meteoritic material from ocean cores) but, as it fell into the Pacific Ocean, apparently no crater was formed. The age of Silverpit and the confirmed Boltysh crater (65.17 ± 0.64 Ma), as well as their latitude, has led to the speculative hypothesis that there may have been several impacts during the KT boundary.[343][344] Of the five oceans in descending order by area, namely the Pacific, Atlantic, Indian, Antarctic, and Arctic, only the smallest (the Arctic) does not yet have a proposed unconfirmed impact crater.

Craters larger than 100 kilometres (62 mi) in the Phanerozoic (after 541 Ma) are notable for their size as well as for the possible coeval events associated with them especially the major extinction events.

For example, the Ishim impact structure[135] is conjectured to be bounded by the late Ordovician-early Silurian (c. 445 ± 5 Ma),[136] the two Warburton basins have been linked to the Late Devonian extinction (c. 360 Ma),[305] both Bedout and the Wilkes Land crater have been associated with the severe Permian–Triassic extinction event (c. 252 Ma),[345][346] Manicouagan (c. 215 Ma) was once thought to be connected to the Triassic–Jurassic extinction event (c. 201 Ma)[347] but more recent dating has made it unlikely, while the consensus is the Chicxulub impact caused the one for Cretaceous–Paleogene (c. 66 Ma).

However, other extinction theories employ coeval periods of massive volcanism such as the Siberian Traps (Permian-Triassic) and Deccan Traps (Cretaceous-Paleogene).

Undiscovered but inferredEdit

 
Australasian strewnfield. Shaded areas represent tektite finds.

There is geological evidence for impact events having taken place on Earth on certain specific occasions, which should have formed craters, but for which no impact craters have been found. In some cases this is because of erosion and Earth's crust having been recycled through plate tectonics, in others likely because exploration of the Earth's surface is incomplete, and also because no actual crater was formed to begin with because the impacting object exploded as a cosmic air burst. Typically the ages are already known and the diameters can be estimated.

Parent crater of Expected crater diameter Age Notes
Pica glass Unknown 12 ka [348]
Libyan desert glass Unknown 29 Ma [349]
Dakhleh glass 0.4 km 150 ka [350][351]
Argentinian tektites 5 km 480 ka [352]
Australasian tektites 32–114 km 780 ka [335]
Central American tektites 14 km 820 ka [353][354]
Skye ejecta deposits Unknown 60 Ma [355]
Stac Fada Member 40 km 1.2 Ga [356]
Barberton Greenstone Belt microtektites 500 km 3.2 Ga [357]
Marble Bar impact spherules "hundreds of kilometers" 3.4 Ga [358][better source needed]

Mistaken identityEdit

Some geological processes can result in circular or near-circular features that may be mistaken for impact craters. Some examples are calderas, maars, sinkholes, glacial cirques, igneous intrusions, ring dikes, salt domes, geologic domes, ventifacts, tuff rings, forest rings, and others. Conversely, an impact crater may originally be thought as one of these geological features, like Meteor Crater (as a maar) or Upheaval Dome (as a salt dome).

The presence of shock metamorphism and shatter cones are important criteria in favor of an impact interpretation, though massive landslides (such as the Köfels landslide of 7800 BC which was once thought to be impact-related) may produce shock-like fused rocks called "frictionite".[359]

See alsoEdit

Notes and referencesEdit

NotesEdit

  1. ^ a b c d e f g h i j k l m n o Shown as "proven" by Mikheeva (2017),[19][unreliable source?] not "confirmed" by EID (2018)[20]

ReferencesEdit

  1. ^ Impact Field Studies Group
  2. ^ Expert Database on Earth Impact Structures
  3. ^ "Earth Impact Database". Archived from the original on 2015-02-07. Retrieved 2016-06-02.
  4. ^ a b Haines, P. W. (2005). "Impact cratering and distal ejecta: The Australian record". Australian Journal of Earth Sciences. 52 (4–5): 481–507. Bibcode:2005AuJES..52..481H. doi:10.1080/08120090500170351. S2CID 128705406.
  5. ^ a b c d Reimold, Wolf Uwe; Koeberl, Christian (2014). "Impact structures in Africa: A review". Journal of African Earth Sciences. 93: 57–175. Bibcode:2014JAfES..93...57R. doi:10.1016/j.jafrearsci.2014.01.008. PMC 4802546. PMID 27065753.
  6. ^ Acevedo, R.; Rocca, M. C.; Ponce, J.; Stinco, S. (2015). Impact Craters in South America. SpringerBriefs in Earth Sciences. Springer. ISBN 978-3-319-13092-7.
  7. ^ Chabou, M. C. (2016). "An updated inventory of meteorite impact structures in the Arab world". 1st ArabGU International Conference, Feb 2016, Algeria.
  8. ^ Crósta, Alvaro P.; Reimold, Wolf Uwe (2016). "Impact Craters in South America, by Acevedo R. D., Rocca M. C. L., Ponce J. F., and Stinco S. G. Heidelberg: Springer, 2015. 104 p. SpringerBriefs in Earth Sciences: South America and the Southern Hemisphere. ISBN 978-3-319-13092-7". Meteoritics & Planetary Science. 51 (5): 996–999. doi:10.1111/maps.12632.
  9. ^ Rampino, M.R; Volk, T. (1996). "Multiple impact event in the Paleozoic: Collision with a string of comets or asteroids?" (PDF). Geophysical Research Letters. 23 (1): 49–52. Bibcode:1996GeoRL..23...49R. doi:10.1029/95GL03605. Retrieved 2019-04-06.
  10. ^ a b c d e f g h i j k l m n Expert Database on Earth Impact Structures (EDEIS), Accessed May 2016
  11. ^ Murgab
  12. ^ Meteorite crater site of Ak-Bura
  13. ^ Bacharev, A (1952), The Murgab meteorite crater. Astron. Tsirk., No 122, pp. 8–10
  14. ^ Al Madafi
  15. ^ Garvin, James B.; Blodget, Herbert W. (1986). "Suspected Impact Crater Near Al Madafi, Saudi Arabia". Meteoritics. 21: 366. Bibcode:1986Metic..21..366G.
  16. ^ Roger Weller. Al Madafi crater
  17. ^ Alamo
  18. ^ Henry Brean (2015). New study ranks Nevada crater among world's largest, Las Vegas Review Journal
  19. ^ Mikheeva, 2017
  20. ^ List of confirmed impact craters by name - Earth Impact Database
  21. ^ Anefis
  22. ^ a b c A. Rossi (2002). Seven Possible New Impact Structures In Western Africa Detected On Aster Imagery, Lunar and Planetary Science XXXIII
  23. ^ Roger Weller Anefis crater
  24. ^ Aorounga
  25. ^ Ocampo, A. C.; Pope, K. O. (1996). "Shuttle Imaging Radar (SIR-C) Images Reveal Multiple Impact Craters at Aorounga, Northern Chad". Lunar and Planetary Science. 27: 977. Bibcode:1996LPI....27..977O.
  26. ^ a b c S. Master & W. Reimold (2000). The impact cratering record of Africa: An updated inventory of proven, probable, possible, and discredited impact structures on the African continent, Catastrophic Events Conference 2000.
  27. ^ Arganaty
  28. ^ Zeilik, B. S. (1987). "The Arganaty cosmogenic crater in southern Kazakhstan and the ring structures associated with it". Akademiia Nauk SSSR, Doklady. 297 (4): 925–928. Bibcode:1987DoSSR.297..925Z.
  29. ^ Barash, M. (2012). "Mass Extinction of Ocean Organisms at the Paleozoic–Mesozoic Boundary: Effects and Causes". Oceanology. 52 (2): 238–248. Bibcode:2012Ocgy...52..238B. doi:10.1134/s000143701201002x. S2CID 129822484.
  30. ^ Unnamed ("Arlit")
  31. ^ David Rajmon (2010). Impact Field Studies Group
  32. ^ Marc Fokker (2008). Astroforum Netherlands
  33. ^ Azuara
  34. ^ Bajada del Diablo
  35. ^ R. D. Acevedo, J. Rabassa, M. J. Orgeira, et al. (2010) Bajada Del Diablo Impact Crater Strewn-Field, Patagonia, Argentina: The Largest Crater Field In The World? 73rd Annual Meteoritical Society Meeting
  36. ^ Acevedo, R.D.; Rabassa, J.; Ponce, J.F.; Martínez, O.; Orgeira, M.J.; Prezzi, C.; Corbella, H.; González-Guillot, M.; Rocca, M.; Subías, I.; Vásquez, C. (2012). "The Bajada del Diablo astrobleme-strewn field, central Patagonia Argentina: Extending the exploration to surrounding areas". Geomorphology. 169–170: 151–164. Bibcode:2012Geomo.169..151A. doi:10.1016/j.geomorph.2012.04.020.
  37. ^ Bajo Hondo
  38. ^ M. C. Rocca (2005). BAJO HONDO, CHUBUT, PATAGONIA, ARGENTINA: A NEW METEORITE IMPACT CRATER IN BASALT?, 68th Annual Meteoritical Society Meeting
  39. ^ Bangui
  40. ^ Girdler, R.; Taylor, P.; Frawley, J. (1992). "A possible impact origin for the Bangui magnetic anomaly (Central Africa)". Tectonophysics. 212 (1): 45–58. Bibcode:1992Tectp.212...45G. doi:10.1016/0040-1951(92)90139-w.
  41. ^ Bateke
  42. ^ S. Master, G.R.J. Cooper and K. Klajnik (2013). The Bateke Plateau Structure – A New Possible 7 Km Diameter Quaternary Meteorite Impact Structure In Gabon: A Remote Sensing Study, 13th SAGA Biennial Conference & Exhibition
  43. ^ Bedout
  44. ^ Becker, L.; Poreda, R. J.; Basu, A. R.; Pope, K. O.; Harrison, T. M.; Nicholson, C.; Iasky, R. (2004). "Bedout: A Possible End-Permian Impact Crater Offshore of Northwestern Australia". Science. 304 (5676): 1469–1476. Bibcode:2004Sci...304.1469B. doi:10.1126/science.1093925. PMID 15143216. S2CID 17927307.
  45. ^ Bee Bluff
  46. ^ R. A. Graham (2005) Reinvestigation of the Bee Bluff Structure South of Uvalde, Texas, 'The Uvalde Crater'. Lunar and Planetary Science XXXVI (2005)
  47. ^ Bee Bluff
  48. ^ Björkö
  49. ^ H. Henkel, A. Bäckström, B. Bergman, O. Stephansson, and M. Lindström (2005). Geothermal Energy from Impact Craters? The Björkö Study, Proceedings World Geothermal Congress 2005
  50. ^ Bloody Creek
  51. ^ Bohemia
  52. ^ Papagiannis, Michael D. (1989). "Photographs from geostationary satellites indicate the possible existence of a huge 300 KM impact crater in the Bohemian region of Czechoslovakia". Meteoritics. 24: 313. Bibcode:1989Metic..24R.313P.
  53. ^ Rajlich, P. (1992). "Bohemian Circular Structure, Czechoslovakia: Search for the Impact Evidence". Abstracts of Papers Presented to the International Conference on Large Meteorite Impacts and Planetary Evolution. Held August 31 – September 2, 1992, in Sudbury, Ontario, Canada. Large Meteorite Impacts and Planetary Evolution. Vol. 790. Lunar and Planetary Institute. p. 57. Bibcode:1992LPICo.790...57R. LPI Contribution 790.
  54. ^ Bow City
  55. ^ Bowers
  56. ^ a b L. P. Hrjanina (Khryanina), 2006. "Once again about Kainozoic meteorite structures in the Ross Sea, Antarctica" (PDF).
  57. ^ Gerard-Little, P.; Abbott, D.; Breger, D.; Burckle, L (2006). "Evidence for a Possible Late Pliocene Impact in the Ross Sea, Antarctica".
  58. ^ Paul Rincon (2006). Space impact clue in Antarctica, BBC News
  59. ^ Heinrich, P.V. (2003) Possible Meteorite Impact Crater in St. Helena Parish, Louisiana Search and Discovery Article. no. 50006. American Association of Petroleum Geologist, Tulsa, Oklahoma. Retrieved March 27, 2011.
  60. ^ King, D.T., Jr., and Petruny, L.W.. 2007. Impact structures and craters of the U.S. Gulf coastal states. Gulf Coast Association of Geological Societies Transactions. v. 57, p. 409-425.
  61. ^ Matherne, C., Karunatillake, S., Hood, D.R., Duxbury, J., Herr, A., Heinrich, P., Horn, M., Webb, A. and Sivils, A., 2020. Planar Deformation Features Found Within a Possible Impact Structure, the Brushy Creek Feature, St. Helena Parish, LA. Lunar and Planetary Science Conference No. 2326, p. 2361.
  62. ^ Herr, Andrew. "Investigating the Brushy Creek Impact Crater" (PDF). Houston lunar and planetary science conference.
  63. ^ Burckle
  64. ^ a b Abbott, Dallas H., Martos, Suzanne, Elkinton, Hannah, Bryant, Edward F., Gusiakov, Viacheslav, and Breger, Dee (2006). Impact craters as sources of megatsunami generated chevron dunes. 2006 Philadelphia Annual Meeting (22–25 October 2006)
  65. ^ Masse W. B., Bryant E., Gusiakov V., Abbott D., Rambolamanana G., Raza H., Courty M.A. (2006). Holocene Indian ocean cosmic impacts – the megatsunami chevron evidence from southern Madagascar. AGU, San Francisco
  66. ^ Catalina
  67. ^ Legg, Mark R.; Nicholson, Craig; Goldfinger, Chris; Milstein, Randall; Kamerling, Marc (2004). "Large enigmatic crater structures offshore southern California". Geophys. J. Int. 159 (2): 803–815. Bibcode:2004GeoJI.159..803L. doi:10.1111/j.1365-246x.2004.02424.x.
  68. ^ Brandsma Dan, Lund Steve P.; Henyey Thomas, L. (1989). "Paleomagnetism of Late Quaternary marine sediments from Santa Catalina basin, California continental borderland ". J. Geophys. Res. B. 94 (1): 547–564. Bibcode:1989JGR....94..547B. doi:10.1029/JB094iB01p00547.
  69. ^ Jarau
  70. ^ a b c d A. Crósta, R. Romano (2004). Brazilian Impact Craters: A Review, 35th Lunar and Planetary Science Conference
  71. ^ a b c d A. Crósta, M. Vasconcelos (2013). Update On The Current Knowledge Of The Brazilian Impact Craters, 44th Lunar and Planetary Science Conference
  72. ^ Charity Shoal
  73. ^ Holcombe, T.L., J. S. Warren, D. F. Reid, W. T. Virden, and D. L. Divins, 2001, Small Rimmed Depression in Lake Ontario: An Impact Crater? Journal of Great Lakes Research. vol. 27, no. 4, pp. 510–517.
  74. ^ Holcombe, T.L., S. Youngblut, and N. Slowey, 2013, Geological structure of Charity Shoal crater, Lake Ontario, revealed by multi beam bathymetry. Geo-Marine Letters. vol. 33, no. 4, pp. 245–252.
  75. ^ Suttak, P.A., 2013, High-resolution lake-based magnetic mapping and modeling of basement structures, with examples from Küçükçekmece Lagoon, Turkey and Charity Shoal, Lake Ontario. unpublished MS thesis, School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario. 113 pp.
  76. ^ Corossol
  77. ^ Higgins, M.D., P. Lajeunesse, G. St-Onge, R. Sanfacon, and M. Duchesne, 2013, Impact Breccia Clast from the Corossol Crater, Canada. 76th Annual Meteoritical Society Meeting. Meteoritics and Planetary Science Supplement. id.5190.
  78. ^ Lajeunesse, P., St‐Onge, G., Locat, J., Duchesne, M.J., Higgins, M.D., Sanfaçon, R. and Ortiz, J., 2013. The Corossol structure: A possible impact crater on the seafloor of the northwestern Gulf of St. Lawrence, Eastern Canada. Meteoritics & Planetary Science, 48(12), pp. 2542–2558.
  79. ^ Lajeunesse, P., Duchesne, M.J., St-Onge, G., Locat, J., Higgins, M., Sanfaçon, R. and Ortiz, J., 2016. The Corossol Structure: a glaciated crater of possible impact origin in the northwestern Gulf of St Lawrence, eastern Canada. In Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K. & Hogan, K. A. (eds) 2016. Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society, London, Memoirs, 46(1), pp.127–128.
  80. ^ Darwin
  81. ^ Decorah
  82. ^ Briggs, D.E.; Liu, H.P.; McKay, R.M.; Witzke, B.J. (2018). "The Winneshiek biota: exceptionally well-preserved fossils in a Middle Ordovician impact crater". Journal of the Geological Society. 175 (6): 865–874. Bibcode:2018JGSoc.175..865B. doi:10.1144/jgs2018-101. S2CID 85450625.
  83. ^ French, B.M., McKay, R.M., Liu, H.P., Briggs, D.E. and Witzke, B.J., 2018. "The Decorah structure, northeastern Iowa: geology and evidence for formation by meteorite impact." Geological Society of America Bulletin, 130(11–12), pp. 2062–2086.
  84. ^ "Potential asteroid impact identified in western Queensland". Geoscience Australia. 2015-03-17. Retrieved 26 June 2016.
  85. ^ Glikson, A.; Korsch, R.J.; Milligan, P. (2016). "The Diamantina River ring feature, Winton region, western Queensland". Australian Journal of Earth Sciences. 63 (5): 1–11. Bibcode:2016AuJES..63..653G. doi:10.1080/08120099.2016.1220978. S2CID 132501378. Retrieved 2019-04-06.
  86. ^ Dumas
  87. ^ a b c Gubins, A. & Strangway, D. (1978). "Magnetic Fields Associated with a Probable Late Cretaceous Astrobleme at Dumas, Saskatchewan", Lunar and Planetary Science IX, pp. 433–435
  88. ^ Duolun
  89. ^ Wu Siben (1989). (1989). "Geologic feature of the Duolun impact crater". Lunar and Planetary Science Conference. 20: 1219. Bibcode:1989LPI....20.1219W.
  90. ^ El-Baz
  91. ^ El-Baz, F (1981). "Circular Feature Among Dunes of the Great Sand Sea, Egypt". Science. 213 (4506): 439–440. Bibcode:1981Sci...213..439E. doi:10.1126/science.213.4506.439. PMID 17760189.
  92. ^ Eltanin
  93. ^ Shuvalov V.V. (2006). Numerical modeling of the Eltanin impact: determination of projectile size and tsunami amplitude. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, pp. 201-202
  94. ^ Weiss Rober, Lynett Patrick; Wunnemann Kai (2015). The Eltanin impact and its tsunami along the coast of South America: Inigshts for potential deposits Earth and Planet. Sci. Lett. Vol. 409. pp. 175–181
  95. ^ Faya Basin
  96. ^ M. Schmieder and E. Buchner (2010). The Faya Basin (Chad) revisited – structural insights from central peak morphology and potential Martian analogs, Nördlingen Ries Crater Workshop (2010).
  97. ^ Rocca, Maximiliano C. L.; Presser, Jaime Leonardo Báez; (2015) "A possible new very large impact structure in Falkland Islands", Historia Natural, Tercera Series, Volumen 5(2)
  98. ^ Rocca, Maximiliano C. L.; Rampino, Michael R.; Presser, Jaime Leonardo Báez (2017). "Geophysical evidence for a large impact structure on the Falkland Plateau". Terra Nova. 29 (4): 233–37. Bibcode:2017TeNov..29..233R. doi:10.1111/ter.12269.
  99. ^ Reimold, W.U.; Crósta, A.P.; Koeberl, C.; Hauser, N. (2017). "Comment on "Geophysical evidence for a large impact structure on the Falkland (Malvinas) Plateau"". Terra Nova. 29 (6): 409–410. Bibcode:2017TeNov..29..233R. doi:10.1111/ter.12284.
  100. ^ McCarthy, D.; Aldiss, Michael D.; Arsenikos, S.; Stone, P.; Richards, P. (2017). "Comment on "Geophysical evidence for a large impact structure on the Falkland (Malvinas) Plateau"" (PDF). Terra Nova. 29 (6): 411–415. Bibcode:2017TeNov..29..233R. doi:10.1111/ter.12285.
  101. ^ Acevedo, R. D.; Rocca, M. C. L.; Ponce, J.; Stinco, S. G. (2015). Impact Craters in South America. Springer. p. 23. ISBN 978-3-319-13093-4.
  102. ^ Fried Egg
  103. ^ Amos, J (2009) 'Fried Egg' may be impact crater BBC News.
  104. ^ Garet El Lefet
  105. ^ Roger Weller. Garet El Lefet crater
  106. ^ a b Classen, J. (1977). "Catalogue of 230 Certain, Probable, Possible, and Doubtful Impact Structures". Meteoritics. 12 (1): 61–78. Bibcode:1977Metic..12...61C. doi:10.1111/j.1945-5100.1977.tb00332.x.
  107. ^ Tornabene, L.L., 2001 The Gatun Structure: A geological assessment of a newly recognized impact structure near Lake Gatun in the Republic de Panama. Master of Science thesis. University of South Florida, Tampa, Florida, USA.
  108. ^ Heckadon-Moreno, S, 2013. Livio Tornabene y el meteorito de Gatun. Epocas. 28 (11):10–11.
  109. ^ LeBlanc, J., 2021. Stratigraphic Lexicon: The Onshore Cenozoic Sedimentary Formations of The Republic of Panama. Biosis: Biological Systems, 2(1), pp.1-173.
  110. ^ General San Martín
  111. ^ a b Harris, R. S.; Schultz, P. H.; Zárate, M. A. (2007) La Dulce Crater: Evidence For A 2.8 Km Impact Structure In The Eastern Pampas Of Argentina, 38th Lunar and Planetary Science Conference
  112. ^ R. D. Acevedo, M. Rocca, J. Rabassa and J. F. Ponce Meteorite Impact Craters In South America: A Brief Review. 74th Annual Meteoritical Society Meeting (2011)
  113. ^ Gnargoo
  114. ^ Iasky, R. P.; Glikson, A. Y. (2005). "Gnargoo: A possible 75 km-diameter post-Early Permian – pre-Cretaceous buried impact structure, Carnarvon Basin, Western Australia". Australian Journal of Earth Sciences. 52 (4–5): 575–586. Bibcode:2005AuJES..52..575I. doi:10.1080/08120090500170377. S2CID 128814897.
  115. ^ Monteiro, J. F. (1991). "The Guarda Circular Structure: A Possible Complex Impact Crater". Abstracts of the Lunar and Planetary Science Conference. 22: 915–916. Bibcode:1991LPI....22..915M.
  116. ^ Van Zalinge, M. E. (2012). "The Guarda structure, NE-Portugal: a meteorite impact crater or not?". Thesis, Utrecht University, Utrecht: 83.
  117. ^ Van Zalinge, M. E.; Hamers, M. F.; Drury, M. R. (2012). "The Guarda structure (Portugal): impact structure or not? Microstructural studies of quartz, zircon and monazite". Meteoritics and Planetary Science Supplement. 75: 5045–5046.
  118. ^ Hartney
  119. ^ Anderson, C. (1980). "A Seismic Reflection Study of a Probable Astrobleme near Hartney, Manitoba" (PDF). Canadian Journal of Exploration Geophysics. 16: 7.
  120. ^ Hiawatha
  121. ^ Kjær, Kurt H.; et al. (2018). "A large impact crater beneath Hiawatha Glacier in northwest Greenland". Science Advances. 4 (11): eaar8173. Bibcode:2018SciA....4.8173K. doi:10.1126/sciadv.aar8173. PMC 6235527. PMID 30443592.
  122. ^ a b Kenny, Gavin G.; Hyde, William R.; Storey, Michael; Garde, Adam A.; Whitehouse, Martin J.; Beck, Pierre; Johansson, Leif; Søndergaard, Anne Sofie; Bjørk, Anders A.; MacGregor, Joseph A.; Khan, Shfaqat A.; Mouginot, Jérémie; Johnson, Brandon C.; Silber, Elizabeth A.; Wielandt, Daniel K. P.; Kjær, Kurt H.; Larsen, Nicolaj K. (11 March 2022). "A Late Paleocene age for Greenland's Hiawatha impact structure". Science Advances. 8 (10): eabm2434. doi:10.1126/sciadv.abm2434. PMID 35263140.
  123. ^ Hickman
  124. ^ Hico
  125. ^ J. Glidewell (2009). SEISMIC DATA THROUGH THE HICO STRUCTURE: A POSSIBLE IMPACT FEATURE IN NORTHCENTRAL TEXAS, 40th Lunar and Planetary Science Conference
  126. ^ Wiberg Leanne (1982). The Hico Structure: a possible impact structure in north-central Texas, USA. Lunar and Planet. Sci. 13: Abstr. Pap. 13th Lunar and Planet. Sci. Conf., Houston, Tex., March 15–19, Pt 2., Houston, Tex., pp. 863–864
  127. ^ Hotchkiss
  128. ^ M. Mazur and R. Stewart (1998). Interpreting the Hotchkiss structure: A possible meteorite impact feature in northwestern Alberta, Consortium for Research in Elastic Wave Exploration Seismology (CREWES).
  129. ^ Howell
  130. ^ B. Deane, P. Lee, K. Milam, J. Evenick, and R.Zawislak (2004). THE HOWELL STRUCTURE, LINCOLN COUNTY, TENNESSEE: A REVIEW OF PAST AND CURRENT RESEARCH, Lunar and Planetary Science XXXV
  131. ^ Milam, K. A., Henderson, T., Deane, B. (2014). An Assessment Of Shock Metamorphism In Breccias From The Howell Structure, Lincoln County, Tennessee, US, Abstracts of the 2014 GSA Annual Meeting, Geological Society of America
  132. ^ Ibn-Batutah
  133. ^ Ghoneim, Eman M. (2009). "Ibn-Batutah: A possible simple impact structure in southeastern Libya, a remote sensing study". Geomorphology. 103 (3): 341–350. Bibcode:2009Geomo.103..341G. doi:10.1016/j.geomorph.2008.07.005.
  134. ^ Ishim
  135. ^ a b Frank Dachille (1976). (1976). "Frequency of the formation of large terrestrial impact craters". Meteoritics. 11: 270. Bibcode:1976Metic..11..270D.
  136. ^ a b Zeylik B. S.; Seytmuratova E. Yu, 1974: A meteorite-impact structure in central Kazakhstan and its magmatic-ore controlling role. Doklady Akademii Nauk SSSR: 1, pp. 167–170
  137. ^ Iturralde
  138. ^ Jackpine Creek
  139. ^ a b S. Goussev, R. Charters, J. Peirce and W. Glenn (2002). Jackpine Creek Magnetic Anomaly: A Case of the HRAM Prospect Scale Interpretation. CSEG: The Canadian Society of Exploration Geophysicists
  140. ^ Jalapasquillo
  141. ^ Maupome, L. (1974). "Possible Meteorite Crater in Mexico". Revista Mexicana de Astronomía y Astrofísica. 1: 81–. Bibcode:1974RMxAA...1...81M.
  142. ^ Jebel Hadid
  143. ^ Schmieder, Martin; Buchner, Elmar; Le Heron, Daniel Paul (2009). "The Jebel Hadid structure (Al Kufrah Basin, SE Libya) – A possible impact structure and potential hydrocarbon trap?". Marine and Petroleum Geology. 26 (3): 310–318. doi:10.1016/j.marpetgeo.2008.04.003.
  144. ^ Jeptha Knob
  145. ^ Snows Island
  146. ^ Talwani, Pradeep; Wildermuth, Eric; Parkinson, Chris D. (2003). "An impact crater in northeast South Carolina inferred from potential field data". Geophysical Research Letters. 30 (7): 1366. Bibcode:2003GeoRL..30.1366T. doi:10.1029/2003GL017051.
  147. ^ Jwaneng South
  148. ^ Sharad Master, Brad Pitts and Marek Wendorff (2009). Jwaneng South Structure, Botswana: a New 1.3 km Diameter Buried Cenozoic Impact Crater Discovered by Airship-mounted Gravity Gradometer, 11th SAGA Biennial Technical Meeting and Exhibition
  149. ^ Kachchh
  150. ^ a b R. V. Karanth, P. Thakker, and M. Gadhavi 2006. A preliminary report on the possible impact crater of Kachchh, Current Science, vol. 91, no. 7, October 2006
  151. ^ Kebira
  152. ^ Reimold, W.U.; Ch, Koeberl (2014). "Impact structures in Africa: A review". J. Afr. Earth Sci. 93: 57–175. Bibcode:2014JAfES..93...57R. doi:10.1016/j.jafrearsci.2014.01.008. PMC 4802546. PMID 27065753.
  153. ^ Kilmichael
  154. ^ M.S. Huber, D.T. King, Jr., L.W. Petruny, and C. Koeberl (2013). REVISITING KILMICHAEL (MISSISSIPPI), A POSSIBLE IMPACT STRUCTURE, 44th Lunar and Planetary Science Conference
  155. ^ Robertson P.B., Butler M.D. (1982). New evidence for the impact origin of Kilmichael Mississippi. Lunar and Planet. Sci. 13: Abstr. Pap. 13th Lunar and Planet. Sci. Conf., Houston, Tex., March 15–19, 1982. Pt 2, Houston, Tex., pp. 653–654
  156. ^ King D.T. Petruny Jr. and L.W. (2002). COSMIC IMPACT IN THE COASTAL PLAIN OF MISSISSIPPI? THE RIDDLE THE OF THE KILMICHAEL STRUCTURE 65th Annual Meteoritical Society Meeting
  157. ^ Krk
  158. ^ T. Marjanac, A. Tomša, Lj. Marjanac, M. Calogovic & S. Fazinic (2015). Krk impact structure ejecta breccia and melt rocks on the islands of Krk and Rab, Croatian Adriatic: A clue on the impact target lithology, Bridging the Gap III (2015)
  159. ^ Kurai Basin
  160. ^ S. A. Vishnevsky (2007). The Kurai Basin, Altai mountains (Russia): First evidences of impact origin, Lunar and Planetary Science XXXVIII (2007)
  161. ^ La Dulce
  162. ^ Labynkyr
  163. ^ Dietz, Robert S.; McHone, John (1974). "Impact structures from ERTS imagery". Meteoritics. 9: 329. Bibcode:1974Metic...9..329D.
  164. ^ Roger Weller. Labynkyr ring
  165. ^ Lac Iro
  166. ^ James B. Garvin (1986). POSSIBLE IMPACT STRUCTURES IN CENTRAL AFRICA
  167. ^ Lairg
  168. ^ (in Russian) Lake Cheko
  169. ^ Tai Hu
  170. ^ Roger Weller. Tai Hu crater
  171. ^ Wang, K.; Geldsetzer, H. H. J. (1992). "A late Devonian impact event and its association with a possible extinction event on Eastern Gondwana". Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution: 77. Bibcode:1992lmip.conf...77W.
  172. ^ Loch Leven
  173. ^ B. J. Hamill (2003). The Loch Leven Crater: Anatomy Of A Low-Angle Oblique Impact Structure, Large Meteorite Impacts
  174. ^ Lorne
  175. ^ Tonkin, P. C. (1998). "Lorne Basin, New South Wales: Evidence for a possible impact origin?". Australian Journal of Earth Sciences. 45 (5): 669–671. Bibcode:1998AuJES..45..669T. doi:10.1080/08120099808728423.
  176. ^ Lycksele 2
  177. ^ D. Nisca, H. Thunehed, L.J. Pesonen, S-Å. Elming (1997). The Lycksele structure, a huge ring formation in northern Sweden: result of an impact?, Large Meteorite Impacts and Planetary Evolution
  178. ^ Pesonen, L. J. (1996). "The impact cratering record of Fennoscandia". Earth, Moon, and Planets. 72 (1–3): 377–393. Bibcode:1996EM&P...72..377P. doi:10.1007/BF00117542. hdl:2060/19930000983. S2CID 125579093.
  179. ^ Madagascar 3
  180. ^ Roger Weller. Madagascar structure
  181. ^ Magyarmecske
  182. ^ Tamas Bodoky et al. (2007). Is the Magyarmecske telluric conductivity anomaly a buried impact structure?
  183. ^ Bodoky Tamas, Kis Marta, Kummer Istvan, Don Gyorgy (2006). The telluric conductivity anomaly at magyarmecske: is it a buried impact crater?. 40th ESLAB First International Conference on Impact Cratering in the Solar System, Noordwijk, The Netherlands
  184. ^ Bodoky T., Kis M., Kummer I., Don Gy. (2006). Geophysical signatures indicate a possible impact crater in Sw-Hungary. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, p. 111
  185. ^ Mahuika
  186. ^ Abbott, D.H., A. Matzen, E.A. Bryant, and S.F. Pekar (2003). Did a bolide impact cause catastrophic tsunamis in Australia and New Zealand?. Geological Society of America Abstracts with Programs, 35:168
  187. ^ Maniitsoq
  188. ^ Garde, Adam A.; McDonald, Iain; Dyck, Brendan; Keulen, Nynke (2012). "Searching for giant, ancient impact structures on Earth: The Mesoarchaean Maniitsoq structure, West Greenland". Earth and Planetary Science Letters. 337–338: 197–210. Bibcode:2012E&PSL.337..197G. doi:10.1016/j.epsl.2012.04.026.
  189. ^ Scherst, Anders; Garde, Adam A. (30 July 2013). "Complete hydrothermal re-equilibration of zircon in the Maniitsoq structure, West Greenland: A 3001 Ma minimum age of impact?". Meteoritics & Planetary Science. 48 (8): 1472–1498. Bibcode:2013M&PS...48.1472S. doi:10.1111/maps.12169.
  190. ^ Mejaouda
  191. ^ Roger Weller. Mejaouda crater
  192. ^ Merewether crater
  193. ^ J. B. Garvin and J. J. Frawley (2008). Geometric Properties Of The Merewether Structure, Newfoundland, Canada.Lunar and Planetary Science XXXIX (2008)
  194. ^ Meseta de la Barda Negra
  195. ^ A.C. Ocampo, A.C. Garrido, J. Rabassa, M.C. Rocca, J.C. Echaurren, and E. Mazzoni (2005). A Possible Impact Crater In Basalt At Meseta De La Barda Negra, Neuquen, Argentina, 68th Annual Meteoritical Society Meeting
  196. ^ Middle Urals
  197. ^ G. Burba (1991). Middle-Urals Ring structure, USSR: Definition, description, possible planetary analogues, Lunar and Planetary Science conference XXII.
  198. ^ G. Burba (2003). The geologic evolution of the Ural Mountains: A supposed exposure to a giant impact. Microsymposium 38, MS011
  199. ^ Mistassini
  200. ^ S. Genest and F. Robert The Mistassini-Otish impact structure, Northern Quebec, Canada: an update – 1987
  201. ^ Mount Ashmore
  202. ^ Glikson, A.; Jablonski, D.; Westlake, S. (2010). "Origin of the Mt Ashmore structural dome, west Bonaparte Basin, Timor Sea". Australian Journal of Earth Sciences. 57 (4): 411–430. Bibcode:2010AuJES..57..411G. doi:10.1080/08120099.2010.481327. S2CID 129839418.
  203. ^ Examining a new asteroid crater found in the Timor Sea. ScienceWise 2010, Australian National Uni
  204. ^ Mousso
  205. ^ Elmar Buchner, Martin Schmieder (2007). Mousso structure: a deeply eroded, medium-sized complex impact crater in northern Chad?, Journal of African Earth Sciences 49, 71–78
  206. ^ Oikeyama
  207. ^ Sakamoto, Masao; Gucsik, Arnold; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Okumura, Tasuku; Toyoda, Shin (2010), "Micro Raman spectroscopy of anomalous planar microstructures in quartz from Mt. Oikeyama: Discovery of a probable impact crater in Japan", Meteoritics and Planetary Science, 45 (1): 32, Bibcode:2010M&PS...45...32S, doi:10.1111/j.1945-5100.2009.01003.x
  208. ^ Mulkarra
  209. ^ J. B. Plescia (1999). Mulkarra Impact Structure, South Australia: A Complex Impact Structure, Lunar and Planetary Science XXX
  210. ^ Nastapoka
  211. ^ Dietz R.S., McHone J.F. (1990). Chesterfield structure (Hudson Bay): possible astrobleme. Lunar and Planet. Sci.: Abstr. Pap. 21st Lunar and Planet. Sci. Conf., March 12–16. Vol. 21, Houston (Tex.), p. 286
  212. ^ Brookfield Michael (2006). The great arc of eastern Hudson Bay, Canada: part of a multi-ringed impact basin. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, p. 35
  213. ^ Ouro Ndia
  214. ^ Pantasma
  215. ^ Panther Mountain
  216. ^ Isachsen, Y.W. (1988). "Metallic spherules and a microtektite support the interpretation of a buried impact crater beneath Panther Mountain in the central Catskill Mountains, New York". Meteoritics & Planetary Science. 33 (4): 74. Bibcode:1998M&PSA..33R..74I.
  217. ^ Isachsen Y.W., Wright S.F., Revetta F.A., Dineen R.J. (1992). The Panther mountain circular structure, a possible buried meteorite crater. Pap. Present. Int. Conf. Large Meteorite Impacts and Planet. Evol., Sudbury, Aug. 31 – Sept. 2, 1992, Houston (Tex.), p. 40
  218. ^ Peerless
  219. ^ J.M. Comstock and J.R. Morrow (2000). PEERLESS STRUCTURE SOUTHWESTERN DANIELS COUNTY, MONTANA: A PROBABLE MIDORDOVICIAN IMPACT EVENT, Lunar and Planetary Science XXXI
  220. ^ Piratininga
  221. ^ Hachiro J. (2000). Four impact cratering on the Parana sedimentary Basin (South America). The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000. Rio de Janeiro: Geol. Surv. Braz., p. 6424
  222. ^ Praia Grande
  223. ^ Ramgarh
  224. ^ Nayak V.K. (1997). The circular structure at Ramgarh, India: an astrobleme(?). LPI Contrib., No. 922, p. 31
  225. ^ Master, S.; Pandit, M.K. (1999). "New evidence for an impact origin of the Ramgarh structure, Rajasthan, India ". Meteoritics & Planetary Science. 34 (4): 79. Bibcode:1999M&PSA..34R..79M.
  226. ^ Ross
  227. ^ Berg J.H. (1991). Crustal xenoliths from Cape McCormick crater, Northern Victoria Land . 6th Int. Symp. Antarct. Earth Eci., Ranran-machi, 9–13 Sept., 1991, Abstr. - [Tokyo], p. 49
  228. ^ Rubielos de la Cérida
  229. ^ Bohor B.F., Foord E.E., Modreski P.J. (1985). Extraterrestrially-derived magnesioferrite at the K-T boundary, Caravaca, Spain. Lunar and Planet. Sci. Vol. 16: Abstr. Pap. 16th Conf., March 11–15, 1985. Pt 1, Houston, Tex., pp. 77–78
  230. ^ Langenhorst F., Deutsch A. (1996). The Azuara and Rubielos strictures, Spain: Twin impact craters of Alpine thrust systems? TEM investigation on deformed quartz disprove shock origin. Lunar and Planet. Sci., Vol.27, pp. 725–726
  231. ^ Sakhalinka
  232. ^ B. Levin, E. Gretskaya, G. Nemchenko (2006). A new astrobleme in the Pacific Ocean, Doklady Earth Sciences, 2006, Vol. 411, No. 8, pp. 1336–1338.
  233. ^ Bostwick Jennifer A., Kyte Frank T. (1993). Impact mineralogy and chemistry of the cretaceous-tertiary boundary at DSDP site 576. Lunar and Planet. Sci. Vol. 24. Abstr. Pap. 24th Lunar and Planet. Sci. Conf., March 15–19, 1993. Pt 1., Houston (Tex.), p. 157
  234. ^ Kyte Frank T., Bostwick Jennifer A. (1995). Magnesioferrite spinel in cretaceous/tertiary boundary sediments of the Pacific basin: remnants of hot, early ejecta from the chicxulub impact?. Earth and Planet. Sci. Lett., Vol. 132, No. 1, pp. 113–123
  235. ^ Kyte Frank T. (1996). A piece of the KT bolide?. Lunar and Planet. Sci. Vol. 27. Abstr. Pap. 27th Lunar and Planet. Sci. Conf., March 18–22, 1996. Pt 2, Houston (Tex.), p. 717
  236. ^ São Miguel do Tapuio
  237. ^ W. D. MacDonald, A. P. Crosta, J. Francolin (2006) Structural Dome At São Miguel do Tapuio, Piaui, Brazil, 69th Annual Meteoritical Society Meeting
  238. ^ Castelo Branco R.M.G. (2000). Some evidences on northeast Brazilian impact structures (astroblemes). The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000, Rio de Janeiro: Geol. Surv. Braz., p. 4479
  239. ^ Castelo Branco R.M.G., Lopes de Castro D. (2004). Geological, geophysical and imaging data of Sao Miguel do Tapuio (SMT) astrobleme, Brazil. 67th Annual Meteoritical Society Meeting
  240. ^ Shanghewan
  241. ^ Dietz, R. S.; McHone, J. F. (1991). "Astroblemes Recently Confirmed with Shatter Cones". 54Th Annual Meeting of the Meteoritical Society. 54: 56. Bibcode:1991LPICo.766...56D.
  242. ^ Wu, S. (1988). "The Shanghewan Impact Crater, China". Lunar and Planetary Science Conference. 19: 1296. Bibcode:1988LPI....19.1296W.
  243. ^ Shiva
  244. ^ Shiyli
  245. ^ S. A. Vishnevsky (2007). Shiyli Dome, Kazakhstan: Origin Of Central Uplift By Elastic Response, Workshop on Impact Cratering II
  246. ^ Silverpit
  247. ^ Stewart SA, Allen PJ (2002). "A 20-km-diameter multi-ringed impact structure in the North Sea". Nature. 418 (6897): 520–523. Bibcode:2002Natur.418..520S. doi:10.1038/nature00914. PMID 12152076. S2CID 4381323.
  248. ^ Smith Kevin (2004). The North Sea Silverpit Crater: impact structure of pull-apart basin?. J. Geol. Soc., Vol. 161, No. 4, pp. 593–602
  249. ^ Collins G.S., Turtle E.P., Melosh H.J. (2003). Numerical simulations of silverpit crater collapse: a comparison of Tekton and SALES . LPI Contrib., No. 1155, p. 18
  250. ^ Stratford R. (2004). Bombarded Britain: A Search for British Impact Structures // Imperial College Press, London
  251. ^ Collins G., Pain C. C., Wilson C. (2006) MODELLING IMPACT CRATER COLLAPSE IN THREE DIMENSIONS
  252. ^ Conway Z.K., Haszeldine S., Rider M. (2006). Determining the origin of the Silverpit crater, UK southern North Sea: can you prove the existence of a meteorite crater without geochemical or mineralogical data?. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, P. 53
  253. ^ Cartwright J., Davies R., Stewart S., Wall M. (2006) BURIAL OF THE SILVERPIT METEORITE CRATER
  254. ^ Sirente
  255. ^ Speranza, F.; Nicolosi, I.; Ricchetti, N.; Etiope, G.; Rochette, P.; Sagnotti, L.; De Ritis, R.; Chiappani, M. (2009). "The "Sirente crater field", Italy". J. Geophys. Res. B. 114 (3): B03103/1. doi:10.1029/2008JB005759.
  256. ^ Mikheeva, A.V., 2019. Sithylemenkat Lake (Sythylemenkat) USA, Alaska, The Complete Catalog of the Earth's Impact structures, ICM&MG SB RAS
  257. ^ Cannon, P.J. (1977). "Meteorite impact crater discovered in central Alaska with Landsat imagery". Science. 196 (4296): 1322–1324. Bibcode:1977Sci...196.1322C. doi:10.1126/science.196.4296.1322. PMID 17831748. S2CID 40015482.
  258. ^ Patton Jr, W.W., Miller, T.P. and Cannon, P.J., 1978. Meteorite impact crater in central Alaska. Science, 201(4352), pp. 279–279.
  259. ^ Rajmon, D., 2012. David Rajmon Global Impact Crater GIS Project AAPG Datapages, Tulsa Oklahoma: American Association of Petroleum Geologists.
  260. ^ Smerdyacheye
  261. ^ L. L. Kashkarov, D. D. Badjukov, A. I. Ivliev, G. V. Kalinina, and M. A. Nazarov, Vernadsky (2005). The Smerdyacheye Lake: New Evidence For Impact Origin And Formation Age, Lunar and Planetary Science XXXVI
  262. ^ Bayuda
  263. ^ A. Sparavigna (2010) Crater-Like Landform in Bayuda Desert (A Processing of Satellite Images)
  264. ^ A. Sparavigna Craters and ring complexes of the North-East Sudanese country
  265. ^ Red Sea Hills
  266. ^ G. Di Achille (2005). A New Candidate Impact Site In Northeastern Sudan Detected From Remote Sensing, Lunar and Planetary Science XXXVI
  267. ^ Chabou M.Ch. (2016). AN UPDATED INVENTORY OF METEORITE IMPACT STRUCTURES IN THE ARAB WORLD // Conference: First ArabGU International Conference (AIC-1). February 17–18, 2016. At: FSTGAT-USTHB, Algiers, ALGERIA.
  268. ^ Svetloyar Lake
  269. ^ V. Feldman, A. Kiselev (2008). Shock-melted impactites at the Svetloyar meteorite crater Volga area, Russia, Lunar and Planetary Science XXXIX
  270. ^ Takamatsu
  271. ^ Y. Miura (2007) Analyses Of Surface And Underground Data Of Takamatsu Crater In Japan. Lunar and Planetary Science XXXVIII
  272. ^ Miura, Y.; Okamoto, M.; Fukuchi, T.; Sato, H.; Kono, Y.; Furumoto, M. (1995). "Takamatsu Crater Structure: Preliminary Report of Impact Crater in Active Orogenic Region". Lunar and Planetary Science Conference. 26: 987. Bibcode:1995LPI....26..987M.
  273. ^ Miura Y. (2002). Shocked quartz materials found in Japan. 18 General Meeting of the International Mineralogical Association "Mineralogy for the New Millennium", Edingurgh, 1–6 Sept., 2002, Edinburgh: IMA, p.105
  274. ^ Miura Y., Hirota A. (2002). Impact-related glasses in Japan. Bull. liaison Soc. fr. mineral. et cristallogr., Vol. 14, No. 1, pp. 18–19
  275. ^ Tarek
  276. ^ Philippe Paillou et al. (2006).An extended field of crater-shaped structures in the Gilf Kebir region, Egypt: Observations and hypotheses about their origin, Journal of African Earth Sciences
  277. ^ Roger Weller. Tarek crater
  278. ^ Tatarsky North
  279. ^ a b B. W. Levin, S. A. Vishnevsky, and N. A. Palchik (2010). Underwater depressions on the bottom of the Tatarsky Strait, the Sea of Japan (western coast of the Sakhalin Island, Russia): possible marine impact craters, 41st Lunar and Planetary Science Conference
  280. ^ Tatarsky South
  281. ^ Tefé
  282. ^ J. de Menezes, C. de Souza, F. Fortes, and C. Filho (1999). Geophysical Evidence Of A Possible Impact Structure At The K-T Boundary Of The Solimões Basin, Brazil, 6th International Congress of the Brazilian Geophysical Society
  283. ^ Talundilly
  284. ^ K. Bron (2015) The Tookoonooka-Talundilly tsunami sequence: constraining marine impact stratigraphy, Australian School of Petroleum, The University of Adelaide
  285. ^ Gostin, V. A.; Therriault, A. M. (1997). "Tookoonooka, a large buried Early Cretaceous impact structure in the Eromanga Basin of southwestern Queensland, Australia". Meteoritics and Planetary Science. 32 (4): 593–599. Bibcode:1997M&PS...32..593G. doi:10.1111/j.1945-5100.1997.tb01303.x. PMID 11540422.
  286. ^ Temimichat
  287. ^ Roger Weller. Temimichat crater
  288. ^ Tsenkher
  289. ^ G. Komatsu et al. (2015)The Tsenkher structure, Gobi-Altai, Mongolia: A probable impact crater with well-preserved rampart ejecta. 46th Lunar and Planetary Science Conference (2015)
  290. ^ Khosbayar P., Ariunbileg Kh. (2000). Impact structure in Mongolia . The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000, Rio de Janeiro: Geol. Surv. Braz, p. 6429
  291. ^ Toms Canyon
  292. ^ Glass B.P. (1987). Coesite associated with North American tektite debris in DSDP site 612 on the continental slope off NEW Jersey . Lunar and Planet. Sci. Houston (Tex.), s.a.. Vol. 18: 18th Conf., Houston Tex., March 16–20, 1987: Abstr. Pap., pp. 328–329
  293. ^ Poag C.Wylie, Poppe Lawrence J. (1998). The Toms Canyon structure, New Jersey outer continental shelf: A possible late Eocene impact crater . Mar. Geol., Vol. 145, No. 1, pp. 23–60
  294. ^ Obasi, Christian C.; Terry, Dennis O.(Jr); Myer, George H.; Grandstaff, David E. (2011). Glauconite composition and morphology, shocked quartz, and the origin of the Cretaceous(?) Main Fossiliferous Layer (MFL) in Southern New Jersey J. Sediment. Res., Vol. 81, No. 7, pp. 479–494
  295. ^ Ust-Kara
  296. ^ C. Koeberl (1990). The Kara/Ust-Kara twin impact structure. Geological Society of America, special paper.
  297. ^ Vélingara
  298. ^ S. Wade, M. Barbieri, J. Lichtenegger (2001) The Velingara Circular Structure Esa Bulletin June 2001
  299. ^ Versailles
  300. ^ Harris, James B.; Jones, Daniel R.; Street, R. L. (1991). "A Shallow Seismic Refraction Study of the Versailles Cryptoexplosion Structure, Central Kentucky". Meteoritics. 26 (1): 47. Bibcode:1991Metic..26...47H. doi:10.1111/j.1945-5100.1991.tb01014.x.
  301. ^ Vichada
  302. ^ Victoria Island
  303. ^ a b Glikson, A.Y., Meixner, A.J., Radke, B., Uysal, I.T., Saygin, E., Vickers, J. and Mernagh, T.P., 2015. Geophysical anomalies and quartz deformation of the Warburton West structure, central Australia. Tectonophysics, 643, pp.55-72.
  304. ^ a b Glikson, A.Y. and Pirajno, F., 2018. The World’s Largest Late to Post-Archaean Asteroid Impact Structures. In Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia (pp. 61-78). Springer, Cham.,
  305. ^ a b Stephen Luntz (2013). Huge Asteroid Impact Identified. Australasian Science
  306. ^ Glikson, A.Y., 2018. Structure and origin of Australian ring and dome features with reference to the search for asteroid impact events. Tectonophysics, 722, pp.175-196.
  307. ^ Dulin S. and Elmore R. D. 2008. Paleomagnetism of the Weaubleau structure, southwestern Missouri. In The sedimentary record of meteorite impacts. (pp. 55-64). Geological Society of America Special Paper No. 437.
  308. ^ Evans, K.R., Mickus, K.L., Rovey II, C.W. and Davis, G.H., 2003. Field Trip I: The Weaubleau-Osceola Structure: Evidence of a Mississippian Meteorite Impact in Southwestern Missouri. Association of Missouri Geologists Field Trip Guidebook. 50th Annual Meeting Springfield, Missouri September 26–27, 2003, Missouri Department of Natural Resources, Rollo, MIssouri.
  309. ^ Beauford, R.E., 2015. Physical records of impacts in the early and modern solar system. PhD thesis, University of Arkansas, Fayetteville, Arkansas, 174 p.
  310. ^ Wembo-Nyama
  311. ^ G. Monegato; M. Massironi & E. Martellato (2010). "The Ring Structure of Wembo-Nyama (Eastern Kasai, R.D. Congo): A Possible Impact Crater in Central Africa" (PDF). Lunar and Planetary Science. XLI (1533): 1601. Bibcode:2010LPI....41.1601M.
  312. ^ "Ring may be giant 'impact crater'". BBC News. 2010-03-10. Retrieved 2010-05-08.
  313. ^ Wilkes Land 2
  314. ^ Woodbury
  315. ^ E. F. Albin and R. S. Harris (2016). WOODBURY ASTROBLEME: FURTHER EVIDENCE FOR A LATE PROTEROZOIC IMPACT STRUCTURE IN WEST-CENTRAL GEORGIA, US, 47th Lunar and Planetary Science Conference
  316. ^ Yallalie
  317. ^ Dentith, M.; Bevan, A.; Backhouse, J.; Featherstone, W.; Koeberl, C. (1999). "Yallalie: a Buried Structure of Possible Impact Origin in the Perth Basin, Western Australia". Geological Magazine. 136 (6): 619–632. Bibcode:1999GeoM..136..619D. doi:10.1017/s0016756899003386. hdl:20.500.11937/10289.
  318. ^ Grant, B. The Yallalie Impact Structure.
  319. ^ Dodson J.R., Ramrath A. (2001). An Upper Pliocene lacustrine environmental record from south-Western Australia - preliminary results. Palaeogeogr., Palaeoclimatol., Palaeoecol., Vol. 167, No. 3, pp. 309–320
  320. ^ Dodson J.R., Macphail M.K. (2004). Palynological evidence for aridity events and vegetation change during the Middle Pliocene, a warm period in Southwestern Australia . Glob. and Planet. Change, Vol. 41, No. 3, pp. 285-307
  321. ^ a b Zerelia East & West
  322. ^ a b Dietrich, V. J; Lagios, E; Reusser, E; Sakkas, V; Gartzos, E; Kyriakopoulos, K (2013). "The enigmatic Zerelia twin-lakes (Thessaly, Central Greece): two potential meteorite impact Craters". Solid Earth Discussions. 5 (2): 1511–1573. Bibcode:2013SolED...5.1511D. doi:10.5194/sed-5-1511-2013. S2CID 56034694.
  323. ^ Whitehouse, David (2003-06-23). "Space impact 'saved Christianity'". BBC News. British Broadcasting Corporation. Retrieved 2009-09-10.
  324. ^ Sandra Blakeslee (2006). Ancient Crash, Epic Wave
  325. ^ Master, S. (2002) Umm al Binni lake, a possible Holocene impact structure in the marshes of southern Iraq. In: Leroy, S. and Stewart, I.S. (Eds.), Environmental Catastrophes and Recovery in the Holocene, Abstracts Volume, Brunel University, UK, 29 August – 2 September 2002, pp. 56–57
  326. ^ Kjær, Kurt H.; et al. (November 2018). "A large impact crater beneath Hiawatha Glacier in northwest Greenland". Science Advances. 4 (11): eaar8173. Bibcode:2018SciA....4.8173K. doi:10.1126/sciadv.aar8173. PMC 6235527. PMID 30443592.
  327. ^ a b Voosen P (14 November 2018). "Massive crater under Greenland's ice points to climate-altering impact in the time of humans". Sciencemag.org. Science. Archived from the original on 13 January 2019. Retrieved 13 January 2019.
  328. ^ Boslough M (March 2019). "Crater Discovery Story Flawed by Premature Link to Speculative Impact Hypothesis". Skeptical Inquirer. 43 (2): 6–7.
  329. ^ Copenhagen, University of (9 March 2022). "Giant impact crater in Greenland occurred a few million years after dinosaurs went extinct". phys.org. Archived from the original on 10 March 2022.
  330. ^ Stevens, G; Spooner, I; Morrow, J; Pufahl, P; Raeside, R; Grieve, RAF; Stanley, CR; Barr, SM; McMullin, D (2008). "Physical evidence of a late-glacial (Younger Dryas?) impact event in southwestern Nova Scotia". Atlantic Geology. 44: 42.
  331. ^ Goff, James; et al. (2010). "Analysis of the Mahuika comet impact tsunami hypothesis". Marine Geology. 271 (3/4): 292–296. Bibcode:2010MGeol.271..292G. doi:10.1016/j.margeo.2010.02.020.
  332. ^ Bourgeois, Joanne; Weiss, Robert (2009). "'Chevrons' are not mega-tsunami deposits – A sedimentologic assessment" (PDF). Geology. 37 (5): 403–406. Bibcode:2009Geo....37..403B. doi:10.1130/G25246A.1.
  333. ^ Pinter, Nicholas; Ishman, Scott E. (2008). "Impacts, mega-tsunami, and other extraordinary claims" (PDF). GSA Today. 18: 37. doi:10.1130/GSAT01801GW.1.
  334. ^ Povenmire H., Liu W. and Xianlin I. (1999) "Australasian tektites found in Guangxi Province, China", 30th Annual Lunar and Planetary Science Conference, Houston, March 1999.
  335. ^ a b Glass, B. P.; Pizzuto, J. E. (1994). "Geographic variation in Australasian microtektite concentrations: Implications concerning the location and size of the source crater". Journal of Geophysical Research. 99 (E9): 19075. Bibcode:1994JGR....9919075G. doi:10.1029/94JE01866.
  336. ^ Hartung, Jack; Koeberl, Christian (1994). "In search of the Australasian tektite source crater: The Tonle Sap hypothesis". Meteoritics. 29 (3): 411–416. Bibcode:1994Metic..29..411H. doi:10.1111/j.1945-5100.1994.tb00606.x.
  337. ^ Vastag, Brian (18 February 2013). "Crater found in Iowa points to asteroid break-up 470 million years ago". Washington Post. Retrieved 19 February 2013.
  338. ^ Ernstson, K.; Claudin, F.; Schüssler, U.; Hradil, K. (2002). "The mid-Tertiary Azuara and Rubielos de la Cérida paired impact structures (Spain)" (PDF). Treb. Mus. Geol. Barcelona. 11: 5–65.
  339. ^ World's largest asteroid impact zone found in Australia: Meteorite broke in two, leaving two craters each 200 km across. Mar 24, 2015
  340. ^ Magnetic anomaly map, Sudbury, Ontario and Quebec. Natural Resources Canada
  341. ^ Rocca, M.; Presser, J. (2015). "A possible new very large impact structure in Malvinas Islands". Historia Natural, Tercera Series. 5 (2).
  342. ^ L. Antoine, W. Reimold, and A. Tessema (1999) The Bangui Magnetic Anomaly Revisited, 62nd Annual Meteoritical Society Meeting
  343. ^ Howard Falcon-Lang (2010). Double space strike 'caused dinosaur extinction', BBC News
  344. ^ Jolley, D.; Gilmour, I.; Gurov, E.; Kelley, S.; Watson, J. (2010). "Two large meteorite impacts at the Cretaceous-Paleogene boundary". Geology. 38 (9): 835–838. Bibcode:2010Geo....38..835J. doi:10.1130/G31034.1.
  345. ^ Becker L., Shukolyukov A., Macassic C., Lugmair G. & Poreda R. 2006. Extraterrestrial Chromium at the Graphite Peak P/Tr boundary and in the Bedout Impact Melt Breccia. Lunar and Planetary Science XXXVII (2006), abstract # 2321.PDF
  346. ^ Gorder, Pam Frost (June 1, 2006). "Big Bang in Antarctica – Killer Crater Found Under Ice". Ohio State University Research News. Archived from the original on March 6, 2016.
  347. ^ Hodych, J.P.; G.R.Dunning (1992). "Did the Manicouagan impact trigger end-of-Triassic mass extinction?". Geology. 20 (1): 51.54. Bibcode:1992Geo....20...51H. doi:10.1130/0091-7613(1992)020<0051:DTMITE>2.3.CO;2.
  348. ^ Schultz, P. H.; Harris, R. S.; Perroud, S.; Blanco, N.; Tomlinson, S. (2022). "Widespread glasses generated by cometary fireballs during the late Pleistocene in the Atacama Desert, Chile". Geology. 50: 205.
  349. ^ Wasson, John T. (2003). "Large aerial bursts: an important class of terrestrial accretionary events". Astrobiology. 3: 163.
  350. ^ Haldemann, A. F. C.; Kleindienst, M. R.; Churcher, C. S.; Smith, J. R.; Schwarcz, H. P.; Markham, K.; Osinski, G. (August 2005). "Mapping Impact Modified Sediments: Subtle Remote-Sensing Signatures of the Dakhleh Oasis Catastrophic Event, Western Desert, Egypt". Bulletin of the American Astronomical Society. 37: 648. Bibcode:2005DPS....37.1703H.
  351. ^ G. Osinski, A. Haldemann, et al. (2007). Impact Glass At The Dakhleh Oasis, Egypt: Evidence For A Cratering Event Or Large Aerial Burst?, Lunar and Planetary Science XXXVIII
  352. ^ Bland, P. A.; De Souza Filho, C. R.; Jull, A. J.; Kelley, S. P.; Hough, R. M.; Artemieva, N. A.; Pierazzo, E.; Coniglio, J.; Pinotti, L.; Evers, V.; Kearsley, A. T. (2002). "A Possible Tektite Strewn Field in the Argentinian Pampa". Science. 296 (5570): 1109–1111. Bibcode:2002Sci...296.1109B. doi:10.1126/science.1068345. PMID 12004127. S2CID 41279356.
  353. ^ H. Povenmire, R. S. Harris, and J. H. Cornec (2011). The New Central American Tektite and Strewn Field. 42nd Lunar and Planetary Science Conference, Houston, Texas. abstract no. 1224.
  354. ^ H. Povenmire, B. Burrer, J. H. Cornec, and R. S. Harris (2012). The New Central American Tektite Strewn Field Update. 43rd Lunar and Planetary Science Conference, Houston, Texas. abstract no. 1260.
  355. ^ Drake, Simon M.; Beard, Andrew D.; Jones, Adrian P.; Brown, David J.; Fortes, A. Dominic; Millar, Ian L.; Carter, Andrew; Baca, Jergus; Downes, Hilary (2017). "Discovery of a meteoritic ejecta layer containing unmelted impactor fragments at the base of Paleocene lavas, Isle of Skye, Scotland". Geology. 46 (2): 171. Bibcode:2018Geo....46..171D. doi:10.1130/g39452.1.
  356. ^ Simms, Michael J. (December 2015). "The Stac Fada impact ejecta deposit and the Lairg Gravity Low: evidence for a buried Precambrian impact crater in Scotland?". Proceedings of the Geologists' Association. 126 (6): 742–761. doi:10.1016/j.pgeola.2015.08.010. Retrieved 5 April 2017.
  357. ^ “Scientists reconstruct ancient impact that dwarfs dinosaur-extinction blast”, American Geophysical Union, April 9, 2014
  358. ^ McKirdy, Euan (18 May 2016). "This apocalyptic asteroid's impact was bigger than one that killed dinosaurs". CNN. Retrieved 19 May 2016.
  359. ^ Weidinger JT, Korup O (2008). "Frictionite as evidence for a large Late Quaternary rockslide near Kanchenjunga, Sikkim Himalayas, India – Implications for extreme events in mountain relief destruction". Geomorphology. 103 (1): 57–65. Bibcode:2009Geomo.103...57W. doi:10.1016/j.geomorph.2007.10.021.
  360. ^ Mika McKinnon (2015). This Is Not A Crater, So What Is It? at space.gizmodo.com
  361. ^ Roger Weller. Semsiyat crater
  362. ^ Dietz, R.S.; Fudali, R.; Cassidy, W. (1969). "Richat and Semsiyat Domes (Mauritania): Not Astroblemes". Geological Society of America. 80 (7): 1367–1372. Bibcode:1969GSAB...80.1367D. doi:10.1130/0016-7606(1969)80[1367:rasdmn]2.0.co;2.

BibliographyEdit

  • Mikheeva, Anna. 2019. The Complete Catalog of the Earth's Impact structures, 1. Institute of Computational Mathematics and Mathematical Geophysics SB RAS. Accessed 2019-04-02.

External linksEdit

Map all coordinates using: OpenStreetMap 
Download coordinates as: KML