Open main menu

Below is an ordered list of the largest stars currently known by radius. The unit of measurement used is the radius of the Sun (approximately 695,700 km; 432,288 mi).

The exact order of this list is very incomplete, as great uncertainties currently remain, especially when deriving various important parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or within a large range of values. Values for stellar radii vary significantly in sources and throughout the literature, mostly as the boundary of the very tenuous atmosphere (opacity) greatly differs depending on the wavelength of light in which the star is observed.

Radii of several stars can be directly obtained by stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test other indirect methods of finding true stellar size. Only a few useful supergiant stars can be occulted by the Moon, including Antares and Aldebaran. Examples of eclipsing binaries include Epsilon Aurigae, VV Cephei, and HR 5171.

Contents

Caveats

 
The extreme red hypergiant star VY Canis Majoris compared to the Sun and Earth's orbit.

Complex issues exist in determining the true radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions that include:

  • Largest stars are usually expressed in units of the solar radius (R), where 1.00 R equals 695,700 kilometres.
  • Stellar radii or diameters are usually only approximated using Stefan–Boltzmann law for the deduced stellar luminosity and effective surface temperature;
  • Stellar distances, and their errors, for most, remain uncertain or poorly determined;
  • Many supergiant stars have extended atmospheres and many are embedded within opaque dust shells, making their true effective temperatures highly uncertain;
  • Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years as variable stars. This makes adopted luminosities poorly known and may significantly change the quoted radii;
  • Other direct methods for determining stellar radii, rely on lunar occultations or from eclipses in binary systems. This is only possible for a very small number of stars;
  • Based on various theoretical evolutionary models, few red supergiants, will exceed 1,500 times the Sun (roughly 3,000–3,715 K and Mbol = −9 or 300,000 L). Such limits maybe also depend on the stellar metallicity.[1]

Extragalactic large stars

In this list are some examples of more distant extragalactic stars, which may have slightly different properties and natures than the currently largest known stars in the Milky Way:

List

List of the largest stars
Star name Solar radii
(Sun = 1)
Method[a] Notes
Orbit of Saturn 1,940–2,169 Reported for reference
UY Scuti 1,708±192[3] AD This value was based on an angular diameter and distance of 2.9 kpc. Gaia DR2 suggests a closer distance and consequently smaller radius. Van Loon et al. calculates 825 R.[4]
WOH G64 1,540–2,575[5] L/Teff This would be the largest star in the LMC, but is unusual in position and motion and might still be a foreground halo giant.
Westerlund 1-26 1,530–1,580[6] (–2,550) [7] L/Teff Very uncertain parameters for an unusual star with strong radio emission. The spectrum is variable but apparently the luminosity is not.
RSGC1-F02 1,498[8] L/Teff
HD 143183 1,469–1,478[9] L/Teff
RSGC1-F01 1,435[8] L/Teff
VY Canis Majoris 1,420[10]–2,000[11] AD VY CMa is described as the largest star in the Milky Way although galactic red supergiants above are possibly larger but they have less accurate radius estimates.[12] Older estimates originally estimated the radius of VY CMa to be above 3,000 R.[13] Margin of error in size determination: ±120 R.[10]
KY Cygni 1,420–2,850[1] L/Teff The upper estimate is due to an unusual K-band measurement and thought to be an artifact of a reddening correction error, and is thought to be against stellar evolutionary theory. The lower estimate is consistent with other stars in the same survey and with theoretical models.
AH Scorpii 1,411±124[3] AD AH Sco is variable by nearly 3 magnitudes in the visual range, and an estimated 20% in total luminosity. The variation in diameter is not clear because the temperature also varies.
VV Cephei A 1,400[14] AD VV Cep A is a highly distorted star in a close binary system, losing mass to the secondary for at least part of its orbit. Data from the most recent eclipse has cast additional doubt on the accepted model of the system. Other estimates ranges of 1,050 R[15] to 1,900 R[1]
IRAS 04509-6922 1,360[16] L/Teff Located in the Large Magellanic Cloud
HV 888 1,353[4] L/Teff Located in the Large Magellanic Cloud
HR 5171 A 1,315±260[17] AD HR 5171 A is a highly distorted star in a close binary system, losing mass to the secondary. It is also variable in temperature, thus probably also in diameter. Traditionally, it is considered as the largest known yellow hypergiant, although the latest research suggests it is a red supergiant with a radius of 1,492±540 R or 1,575±400 R.[18][19]
SMC 18136 1,310[2] L/Teff Located in the Small Magellanic Cloud.
IRAS 05280-6910 1,260[16]–1,738[20] L/Teff Located in the Large Magellanic Cloud
Mu Cephei (Herschel's "Garnet Star") 1,260[21]–1,650[22] L/Teff & AD Prototype of the obsolete class of the Mu Cephei variables and also one of reddest stars in the night sky in terms of the B-V color index.[23] Other estimates have given only 650 R based on much closer distances.[24]
SP77 46-44 (WOH S341) 1,258[4] L/Teff Located in the Large Magellanic Cloud
LMC 136042 1,240[2] L/Teff Located in the Large Magellanic Cloud
Westerlund 1-237 1,233[7] L/Teff
SMC 5092 1,220[2] L/Teff
S Persei 1,212±124[25] AD & L/Teff A red hypergiant localed in the Perseus Double Cluster. Levsque et al. 2005 calculated radii of 780 R and 1,230 R based on K-band measurements.[1] Older estimates gave up to 2,853 R based on higher luminosities.[26]
LMC 175464 1,200[2] L/Teff Located in the Large Magellanic Cloud.
LMC 135720 1,200[2] L/Teff Located in the Large Magellanic Cloud
IRC -10414 1,200[27] L/Teff IRC -10414 is a rare red supergiant companion to WR 114 that has a bow shock.
PZ Cassiopeiae 1,190–1,940[1] L/Teff The upper estimate is due to an unusual K-band measurement and thought to be an artefact of a reddening correction error. The lower estimate is consistent with other stars in the same survey and with theoretical models, and the intermediate ones have been obtained refining the distance to this star, and thus its parameters.[28]
SMC 69886 1,190[2] L/Teff
NML Cygni 1,183[29] L/Teff NML Cyg is calculated to be between 1,640 R and 2,770 R based on a more accurate measure of its distance combined with assumptions of its temperature.[30]
RSGC1-F05 1,177[8] L/Teff
EV Carinae 1,168[4] L/Teff Older estimates based on much larger distances have given higher luminosities, and consequently larger radii.[31][26]
RSGC1-F03 1,168[8] L/Teff
LMC 119219 1,150[2] L/Teff Located in the Large Magellanic Cloud
RSGC1-F08 1,146[8] L/Teff
BC Cygni 1,140[1]–1,230[21] L/Teff BC Cyg is calculated to vary in size from 856 R to 1,553 R.[32]
MY Cephei 1,134[33] L/Teff Not to be confused with Mu Cephei (see above). Older estimates have given up to 2,440 R based on much cooler temperatures.[34]
J004035.08+404522.3 1,130–1,230[35] L/Teff Located in the Andromeda Galaxy
SMC 10889 1,130[2] L/Teff
VX Sagittarii 1,120–1,550[36] L/Teff VX Sgr is a pulsating variable with a large visual range and is calculated to vary in size from 1,350 R to 1,940 R.[37]
LMC 141430 1,110[2] L/Teff Located in the Large Magellanic Cloud
IRAS 04516-6902 1,100[16] L/Teff Located in the Large Magellanic Cloud
LMC 175746 1,100[2] L/Teff Located in the Large Magellanic Cloud
RSGC1-F13 1,098[8] L/Teff
RT Carinae 1,090[1] L/Teff
RSGC1-F04 1,082[8] L/Teff
LMC 174714 1,080[2] L/Teff Located in the Large Magellanic Cloud
LMC 68125 1,080[2] L/Teff Located in the Large Magellanic Cloud
SMC 49478 1,080[2] L/Teff
SMC 20133 1,080[2] L/Teff
V396 Centauri 1,070[1] L/Teff
SMC 8930 1,070[2] L/Teff
Orbit of Jupiter 1,064–1,173 Reported for reference
HV 11423 1,060–1,220[38] L/Teff HV 11423 is variable in spectral type (observed from K0 to M5), thus probably also in diameter. In October 1978, it was a star of M0I type.
CK Carinae 1,060[1] L/Teff
SMC 25879 1,060[2] L/Teff
LMC 142202 1,050[2] L/Teff Located in the Large Magellanic Cloud
LMC 146126 1,050[2] L/Teff Located in the Large Magellanic Cloud
LMC 67982 1,040[2] L/Teff Located in the Large Magellanic Cloud
U Lacertae 1,022[31][39] L/Teff
RSGC1-F11 1,015[8] L/Teff
LMC 143877 1,010[2] L/Teff Located in the Large Magellanic Cloud
KW Sagittarii 1,009[3]–1,460[1] AD & L/Teff Margin of possible error: ±142 R.[3]
RSGC1-F12 1,005[7] L/Teff
Progenitor of SN 2017eaw 1,000–2,000[40] L/Teff Located in NGC 6946
SMC 46497 990[2] L/Teff
LMC 140296 990[2] L/Teff Located in the Large Magellanic Cloud
RSGC1-F09 986[8] L/Teff
RW Cephei 981–1,758[41][42] L/Teff RW Cep is variable both in brightness (by at least a factor of 3) and spectral type (observed from G8 to M), thus probably also in diameter. Because the spectral type and temperature at maximum luminosity are not known, the quoted sizes are just estimates.
NR Vulpeculae 980[1] L/Teff
SMC 12322 980[2] L/Teff
LMC 177997 980[2] L/Teff Located in the Large Magellanic Cloud
SMC 59803 970[2] L/Teff
Westerlund 1-20 965[7] L/Teff
GCIRS 7 960[43]–1,000[44] AD Located at the galactic center. Margin of possible error: ±92 R[43] or ±150 R.[44]
HV 2561 957[4] L/Teff Located in the Large Magellanic Cloud
SMC 50840 950[2] L/Teff
J004424.94+412322.3 945–1,300[35] L/Teff Located in the Andromeda Galaxy.
HV 916 944[4] L/Teff Located in the Large Magellanic Cloud
RSGC1-F10 931[8] L/Teff
S Cassiopeiae 930[45][46]
IX Carinae 920[1] L/Teff
HV 2112 916[47] L/Teff Most likely candidate for a Thorne-Zytkow Object.
RSGC1-F07 910[8] L/Teff
LMC 54365 900[2] L/Teff Located in the Large Magellanic Cloud
IRAS 04498-6842 900[48]–1,660[16] L/Teff Located in the Large Magellanic Cloud
HV 996 894[4] L/Teff Located in the Large Magellanic Cloud
NSV 25875 891[29] L/Teff
LMC 109106 890[2] L/Teff Located in the Large Magellanic Cloud
HV 12501 890[4] L/Teff Located in the Large Magellanic Cloud
Betelgeuse (Alpha Orionis) 887±203[49] AD Star with the third largest apparent size after R Doradus and the Sun. Another estimate give 955±217 R[50]
RSGC1-F06 885[8] L/Teff
LMC 116895 880[2] L/Teff Located in the Large Magellanic Cloud
SMC 30616 880[2] L/Teff
LMC 64048 880[2] L/Teff Located in the Large Magellanic Cloud
IRAS 05558-7000 880[16] L/Teff Located in the Large Magellanic Cloud
V437 Scuti 874[29] L/Teff
IRAS 04407-7000 870[16] L/Teff Located in the Large Magellanic Cloud
IRAS 05329-6708 870[16] L/Teff Located in the Large Magellanic Cloud
HV 986 867[4] L/Teff Located in the Large Magellanic Cloud
V602 Carinae 860[1]–1,050[51] L/Teff & AD Margin of possible error: ±165 R.[51]
J004047.82+410936.4 860–1,010[35] L/Teff Located in the Andromeda Galaxy
V669 Cassiopeiae 859[29] L/Teff
HV 2360 857[4] L/Teff Located in the Large Magellanic Cloud
HV 5870 856[4] L/Teff Located in the Large Magellanic Cloud
BI Cygni 850[21]–1,240[1] L/Teff
SMC 55681 850[2] L/Teff
SMC 15510 850[2] L/Teff
LMC 61753 830[2] L/Teff Located in the Large Magellanic Cloud
LMC 62090 830[2] L/Teff Located in the Large Magellanic Cloud
SMC 11709 830[2] L/Teff
V1185 Scorpii 830[29] L/Teff
LMC 142199 810[2] L/Teff Located in the Large Magellanic Cloud
IRAS 05294-7104 810[16] L/Teff Located in the Large Magellanic Cloud
IRAS 05402-6956 800[16] L/Teff Located in the Large Magellanic Cloud
LMC 134383 800[2] L/Teff Located in the Large Magellanic Cloud
V441 Persei 799[7] L/Teff
BU Persei 795[7] L/Teff
IRAS 05298-6957 790[16] L/Teff Located in the Large Magellanic Cloud
BO Carinae 790[1] L/Teff
LMC 142907 790[2] L/Teff Located in the Large Magellanic Cloud
SU Persei 780[1] L/Teff In the Perseus Double Cluster
RS Persei 770[52]–1,000[1] AD & L/Teff In the Perseus Double Cluster. Margin of possible error: ±30 R.[52]
AV Persei 770[1] L/Teff In the Perseus Double Cluster
V355 Cephei 770[1] L/Teff Mauron et al. 2011 derive 37,000 L, which implies a size around 300 R.[31]
J004124.80+411634.7 760–1,240[35] L/Teff Located in the Andromeda Galaxy and has a possible hot companion.
V915 Scorpii 760[53][54] L/Teff
S Cephei 760[55] AD
YZ Persei 758[7] L/Teff
J004447.08+412801.7 755–825[35] L/Teff Located in the Andromeda Galaxy
GP Cassiopeiae 751[7] L/Teff
Outer limits of the asteroid belt 750–900 Reported for reference
SMC 11939 750[2] L/Teff
HD 303250 750[1] L/Teff
V382 Carinae 747[56] Yellow hypergiant, one of the rarest types of a star. Other estimate ranges of 600 R to 1,100 R.[57]
R Cygni 745[58][59] L/Teff
RU Virginis 740[60] L/Teff
LMC 137818 740[2] L/Teff Located in the Large Magellanic Cloud
SMC 48122 740[2] L/Teff
IRAS 04545-7000 730[16] L/Teff Located in the Large Magellanic Cloud
IRAS 05003-6712 730[16] L/Teff Located in the Large Magellanic Cloud
SMC 56732 730[2] L/Teff
KK Persei 724[7] L/Teff
V648 Cassiopeiae 710[1] L/Teff
XX Persei 710[7] L/Teff Located in the Perseus Double Cluster and near the border with Andromeda.
TV Geminorum 620–710[61] (–770)[1] L/Teff
HD 179821 704±259[62] HD 179821 may be a yellow hypergiant or a much less luminous star.
J004255.95+404857.5 700–785[35] L/Teff Located in the Andromeda Galaxy
J003950.98+405422.5 700[63] L/Teff Located in the Andromeda Galaxy
LMC 169754 700[2] L/Teff Located in the Large Magellanic Cloud
LMC 65558 700[2] L/Teff Located in the Large Magellanic Cloud
V528 Carinae 700[1] L/Teff
RSGC1-F14 700[8] L/Teff
The following well-known stars are listed for the purpose of comparison.
V354 Cephei 689[31]–1,520[1] L/Teff
Antares A (Alpha Scorpii A) 680[64] (varies by 19%)[65] AD Antares was originally calculated to be over 850 R,[66][67] but those estimates are likely to have been affected by asymmetry of the atmosphere of the star.[64]
HR 5171 Ab 650±150[19] AD The yellow giant or supergiant companion of HR 5171 A.
CE Tauri 587–593[68] (–608[69]) AD Can be occulted by the Moon, allowing accurate determination of its apparent diameter.
Mira A (Omicron Ceti) 332–402[70] AD Prototype Mira variable. De beck et al. 2010 calculates 541 R.[29]
V509 Cassiopeiae (HR 8752) 400–900[71] L/Teff Yellow hypergiant, one of the rarest types of a star.
R Leporis (Hind's "Crimson Star") 400[72]–535[73] AD & L/Teff Margin of possible error: ±90 R.[72]
Rho Cassiopeiae 400–500[74] L/Teff Yellow hypergiant, one of the rarest types of a star.
Inner limits of the asteroid belt 380 Reported for reference
CW Leonis 390[75]–826[29] L/Teff Prototype of carbon stars. CW Leo was mistakenly identified as the claimed planet "Nibiru" or "Planet X".
V838 Monocerotis 380 (in 2009)[76] A short time after the outburst V838 Mon was measured at 1,570 ± 400 R,[77] but its distance, and hence its size, have since been reduced and it proved to be a transient object that shrunk about four-fold over a few years. Like CW Leo, it has been erroneously portrayed as "Nibiru" or "Planet X" (see above).
R Doradus 370±50[78] AD Star with the second largest apparent size after the Sun.
Tail of Comet Hyakutake 360 Reported for reference
IRC +10420 357[79] L/Teff A yellow hypergiant that has increased its temperature into the LBV range. De beck et al. 2010 calculates 1,342 R based on a much cooler temperature.[29]
The Pistol Star 340[80] AD Blue hypergiant, among the most massive and luminous stars known.
La Superba (Y Canum Venaticorum) 307[29]–390[81] L/Teff Referred to as La Superba by Angelo Secchi. Currently one of the coolest and reddest stars.
Orbit of Mars 297–358 Reported for reference
Alpha Herculis (Ras Algethi) 284±60[82] L/Teff The estimate ranges from 264 R to 303 R[82]
Sun's red giant phase 256[83] At this point, the Sun will engulf Mercury and Venus, and possibly the Earth although it will move away from its orbit since the Sun will lose a third of its mass. During the helium burning phase, it will shrink to 10 R but will later grow again and become an unstable AGB star, and then a white dwarf after making a planetary nebula.[84][85] Reported for reference
Eta Carinae A (Tseen She) ~240[86] Previously thought to be the most massive single star, but in 2005 it was realized to be a binary system. During the Great Eruption, the size was much larger at around 1,400 R.[87] η Car is calculated to be between 60 R and 881 R.[88]
Orbit of Earth 215 (211–219) Reported for reference
Deneb (Alpha Cygni) 203±17[89] AD Prototype Alpha Cygni variable.
Solar System Habitable Zone 200–520[90] (uncertain) Reported for reference
Orbit of Venus 154–157 Reported for reference
Epsilon Aurigae A (Almaaz) 143–358[91] AD ε Aur was incorrectly claimed in 1970 as the largest star with a size between 2,000 R and 3,000 R,[92] even though it later turned out not to be an infrared light star but rather a dusk torus surrounding the system.
S Doradus 100–380[93] AD Prototype S Doradus variable, even though P Cygni was the first discovered.
Peony Star 92[94] AD Candidate for most luminous star in the Milky Way.
Rigel A (Beta Orionis A) 78.9±7.4[95] AD Other estimate ranges of 74.1+6.1
−7.3
 R
[96] to 109±12 R[97]
Canopus (Alpha Carinae) 71±4[98] AD Second brightest star in the night sky.
Orbit of Mercury 66–100 Reported for reference
LBV 1806-20 46–145[99] L/Teff Formerly a candidate for the most luminous star in the Milky Way with 40 million L,[100] but the luminosity has been revised later only 2 million L.[101][102]
Aldebaran (Alpha Tauri) 44.13±0.84[103] AD
Polaris (Alpha Ursae Minoris) 37.5[104] AD The current northern pole star.
R136a1 28.8[105]–35.4[106] AD Also on record as the most massive and luminous star known (315 M and 8.71 million L).
Arcturus (Alpha Boötis) 25.4±0.2[107] AD Brightest star in the northern hemisphere.
HDE 226868 20–22[108] The supergiant companion of black hole Cygnus X-1. The black hole is around 500,000 times smaller than the star.
VV Cephei B 13[109]–25[110] The B-type main sequence companion of VV Cephei A.
Sun 1 The largest object in the Solar System.
Reported for reference
  1. ^ AD: radius determined from angular diameter and distance
    L/Teff: radius calculated from bolometric luminosity and effective temperature

See also

References

  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x Table 4 in Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not as Cool as We Thought". The Astrophysical Journal. 628 (2): 973–985. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901.
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at Levesque, Emily M.; Massey, Philip; Olsen, K.A.G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal. 645 (2): 1102–1117. arXiv:astro-ph/0603596. Bibcode:2006ApJ...645.1102L. doi:10.1086/504417.
  3. ^ a b c d Arroyo-Torres, B; Wittkowski, M; Marcaide, J. M; Hauschildt, P. H (June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy & Astrophysics. 554 (A76): A76. arXiv:1305.6179. Bibcode:2013A&A...554A..76A. doi:10.1051/0004-6361/201220920.
  4. ^ a b c d e f g h i j k Van Loon, J. Th.; Cioni, M.-R. L.; Zijlstra, A. A.; Loup, C. (2005). "An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars". Astronomy and Astrophysics. 438 (1): 273–289. arXiv:astro-ph/0504379. Bibcode:2005A&A...438..273V. doi:10.1051/0004-6361:20042555.
  5. ^ Levesque, Emily M; Massey, Philip; Plez, Bertrand; Olsen, Knut A. G (June 2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". Astronomical Journal. 137 (6): 4744. arXiv:0903.2260. Bibcode:2009AJ....137.4744L. doi:10.1088/0004-6256/137/6/4744.
  6. ^ Wright, Nicholas J; Wesson, Roger; Drew, Janet E; Barentsen, Geert; Barlow, Michael J; Walsh, Jeremy R; Zijlstra, Albert; Drake, Jeremy J; Eislöffel, Jochen; Farnhill, Hywel J (2014). "The ionized nebula surrounding the red supergiant W26 in Westerlund 1". Monthly Notices of the Royal Astronomical Society: Letters. 437 (1): L1. arXiv:1309.4086. Bibcode:2014MNRAS.437L...1W. doi:10.1093/mnrasl/slt127.
  7. ^ a b c d e f g h i j Fok, Thomas K. T; Nakashima, Jun-ichi; Yung, Bosco H. K; Hsia, Chih-Hao; Deguchi, Shuji (2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal. 760: 65. arXiv:1209.6427. doi:10.1088/0004-637X/760/1/65.
  8. ^ a b c d e f g h i j k l m Davies, B.; Figer, D. F.; Law, C. J.; Kudritzki, R. P.; Najarro, F.; Herrero, A.; MacKenty, J. W. (2008). "The Cool Supergiant Population of the Massive Young Star Cluster RSGC1". The Astrophysical Journal. 676 (2): 1016–1028. arXiv:0711.4757. Bibcode:2008ApJ...676.1016D. doi:10.1086/527350.
  9. ^ Blum, R. D; Ramirez, Solange V; Sellgren, K; Olsen, K (2003). "Really Cool Stars and the Star Formation History at the Galactic Center". The Astrophysical Journal. 597: 323–346. arXiv:astro-ph/0307291. doi:10.1086/378380.
  10. ^ a b Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy & Astrophysics. 540: L12. arXiv:1203.5194. Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126.
  11. ^ Page 11 in Kamiński, T; Gottlieb, C. A; Menten, K. M; Patel, N. A; Young, K. H; Brünken, S; Müller, H. S. P; McCarthy, M. C; Winters, J. M; Decin, L (2013). "Pure rotational spectra of TiO and TiO2 in VY Canis Majoris". Astronomy and Astrophysics. 551 (2013): A113. arXiv:1301.4344. Bibcode:2013A&A...551A.113K. doi:10.1051/0004-6361/201220290.
  12. ^ Alcolea, J; Bujarrabal, V; Planesas, P; Teyssier, D; Cernicharo, J; De Beck, E; Decin, L; Dominik, C; Justtanont, K; De Koter, A; Marston, A. P; Melnick, G; Menten, K. M; Neufeld, D. A; Olofsson, H; Schmidt, M; Schöier, F. L; Szczerba, R; Waters, L. B. F. M (2013). "HIFISTARSHerschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star". Astronomy & Astrophysics. 559: A93. arXiv:1310.2400. Bibcode:2013A&A...559A..93A. doi:10.1051/0004-6361/201321683.
  13. ^ Monnier, J. D; Millan-Gabet, R; Tuthill, P. G; Traub, W. A; Carleton, N. P; Coudé Du Foresto, V; Danchi, W. C; Lacasse, M. G; Morel, S; Perrin, G; Porro, I. L; Schloerb, F. P; Townes, C. H (2004). "High-Resolution Imaging of Dust Shells by Using Keck Aperture Masking and the IOTA Interferometer". The Astrophysical Journal. 605 (1): 436–461. arXiv:astro-ph/0401363. Bibcode:2004ApJ...605..436M. doi:10.1086/382218.
  14. ^ Ridpath & Tirion 2001, pp. 112–113.
  15. ^ Bauer, W. H.; Gull, T. R.; Bennett, P. D. (2008). "Spatial Extension in the Ultraviolet Spectrum of Vv Cephei". The Astronomical Journal. 136 (3): 1312. Bibcode:2008AJ....136.1312H. doi:10.1088/0004-6256/136/3/1312.
  16. ^ a b c d e f g h i j k l Marshall, Jonathan R; van Loon, Jacco Th; Matsuura, Mikako; Wood, Peter R; Zijlstra, Albert A; Whitelock, Patricia A (2004). "The AGB superwind speed at low metallicity". Monthly Notices of the Royal Astronomical Society. 355 (4): 1348. arXiv:astro-ph/0410120. doi:10.1111/j.1365-2966.2004.08417.x.
  17. ^ Chesneau, O.; Meilland, A.; Chapellier, E.; Millour, F.; Van Genderen, A. M.; Nazé, Y.; Smith, N.; Spang, A.; Smoker, J. V.; Dessart, L.; Kanaan, S.; Bendjoya, Ph.; Feast, M. W.; Groh, J. H.; Lobel, A.; Nardetto, N.; Otero, S.; Oudmaijer, R. D.; Tekola, A. G.; Whitelock, P. A.; Arcos, C.; Curé, M.; Vanzi, L. (2014). "The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in the common envelope phase". Astronomy & Astrophysics. 563: A71. arXiv:1401.2628. Bibcode:2014A&A...563A..71C. doi:10.1051/0004-6361/201322421.
  18. ^ Wittkowski, M.; Arroyo-Torres, B.; Marcaide, J. M.; Abellan, F. J.; Chiavassa, A.; Guirado, J. C. (2017). "VLTI/AMBER spectro-interferometry of the late-type supergiants V766 Cen (=HR 5171 A), σ Oph, BM Sco, and HD 206859". Astronomy & Astrophysics. 597 (9): A9. arXiv:1610.01927. Bibcode:2017A&A...597A...9W. doi:10.1051/0004-6361/201629349.
  19. ^ a b Wittkowski, M.; Abellan, F. J.; Arroyo-Torres, B.; Chiavassa, A.; Guirado, J. C.; Marcaide, J. M.; Alberdi, A.; De Wit, W. J.; Hofmann, K.-H.; Meilland, A.; Millour, F.; Mohamed, S.; Sanchez-Bermudez, J. (October 2017) [Published online: 29 September 2017]. "Multi-epoch VLTI-PIONIER imaging of the supergiant V766 Cen: Image of the close companion in front of the primary". Astronomy & Astrophysics. 606 (1): L1. arXiv:1709.09430. Bibcode:2017arXiv170909430W. doi:10.1051/0004-6361/201731569.
  20. ^ Levesque, Emily M; Massey, Philip; Olsen, K. A. G; Plez, Bertrand; Meynet, George; Maeder, Andre; Boyer, Martha; Decin, L; Khouri, Theo; Meixner, Margaret; Van Loon, Jacco Th; Woods, Paul M (2016). "The mass-loss rates of red supergiants at low metallicity: Detection of rotational CO emission from two red supergiants in the Large Magellanic Cloud". Monthly Notices of the Royal Astronomical Society. 462 (3): 2995–3005. arXiv:1608.01729. doi:10.1093/mnras/stw1853.
  21. ^ a b c Josselin, E.; Plez, B. (2007). "Atmospheric dynamics and the mass loss process in red supergiant stars". Astronomy and Astrophysics. 469 (2): 671–680. arXiv:0705.0266. Bibcode:2007A&A...469..671J. doi:10.1051/0004-6361:20066353.
  22. ^ "Jim Kaler-Garnet star".
  23. ^ Ahad, Abdul (May 1, 2004). "The second 'Garnet Star' after Mu Cephei must be 119 Tauri!". Google Groups.
  24. ^ Tsuji, Takashi (2000). "Water in Emission in the Infrared Space Observatory Spectrum of the Early M Supergiant Star μ Cephei". The Astrophysical Journal Letters. 540 (2): 99–102. arXiv:astro-ph/0008058. Bibcode:2000ApJ...540L..99T. doi:10.1086/312879.
  25. ^ Thompson, R. R.; Creech-Eakman, M. J. (2003). "Interferometric observations of the supergiant S Persei: Evidence for axial symmetry and the warm molecular layer". American Astronomical Society Meeting 203. 203: 49.07. Bibcode:2003AAS...203.4907T.
  26. ^ a b De Jager, C; Nieuwenhuijzen, H; Van Der Hucht, K. A (1988). "Mass loss rates in the Hertzsprung-Russell diagram". Astronomy and Astrophysics Supplement Series. 72: 259. Bibcode:1988A&AS...72..259D. ISSN 0365-0138.
  27. ^ Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; MacKey, J.; Kraus, A.; Meyer, D. M.-A.; Kamiński, T. (2014). "IRC -10414: A bow-shock-producing red supergiant star". Monthly Notices of the Royal Astronomical Society. 437 (1): 843. arXiv:1310.2245. Bibcode:2014MNRAS.437..843G. doi:10.1093/mnras/stt1943.
  28. ^ Kusuno, K.; Asaki, Y.; Imai, H.; Oyama, T. (2013). "Distance and Proper Motion Measurement of the Red Supergiant, Pz Cas, in Very Long Baseline Interferometry H2O Maser Astrometry". The Astrophysical Journal. 774 (2): 107. arXiv:1308.3580. Bibcode:2013ApJ...774..107K. doi:10.1088/0004-637X/774/2/107.
  29. ^ a b c d e f g h i De Beck, E.; Decin, L.; De Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M. (2010). "Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: Derivation of mass-loss rate formulae". Astronomy and Astrophysics. 523: A18. arXiv:1008.1083. Bibcode:2010A&A...523A..18D. doi:10.1051/0004-6361/200913771.
  30. ^ Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.; Brunthaler, A. (2012). "The distance and size of the red hypergiant NML Cygni from VLBA and VLA astrometry". Astronomy & Astrophysics. 544: A42. arXiv:1207.1850. Bibcode:2012A&A...544A..42Z. doi:10.1051/0004-6361/201219587.
  31. ^ a b c d Mauron, N.; Josselin, E. (2011). "The mass-loss rates of red supergiants and the de Jager prescription". Astronomy and Astrophysics. 526: A156. arXiv:1010.5369. Bibcode:2011A&A...526A.156M. doi:10.1051/0004-6361/201013993.
  32. ^ Turner, David G.; Rohanizadegan, Mina; Berdnikov, Leonid N.; Pastukhova, Elena N. (2006). "The Long-Term Behavior of the Semiregular M Supergiant Variable BC Cygni". The Publications of the Astronomical Society of the Pacific. 118 (849): 1533. Bibcode:2006PASP..118.1533T. doi:10.1086/508905.
  33. ^ Beasor, Emma R; Davies, Ben; Arroyo-Torres, B; Chiavassa, A; Guirado, J. C; Marcaide, J. M; Alberdi, A; De Wit, W. J; Hofmann, K. -H; Meilland, A; Millour, F; Mohamed, S; Sanchez-Bermudez, J (2018). "The evolution of red supergiant mass-loss rates". Monthly Notices of the Royal Astronomical Society. 475 (1): 55. Bibcode:2018MNRAS.475...55B.
  34. ^ Fawley, W. M; Cohen, M (1974). "The open cluster NGC 7419 and its M7 supergiant IRC +60 375". Astrophysical Journal. 193: 367. Bibcode:1974ApJ...193..367F. doi:10.1086/153171.
  35. ^ a b c d e f Massey, Philip; Silva, David R; Levesque, Emily M; Plez, Bertrand; Olsen, Knut A. G; Clayton, Geoffrey C; Meynet, Georges; Maeder, Andre (2009). "Red Supergiants in the Andromeda Galaxy (M31)". The Astrophysical Journal. 703: 420–440. arXiv:0907.3767. doi:10.1088/0004-637X/703/1/420.
  36. ^ Xu, Shuangjing; Zhang, Bo; Reid, Mark J; Menten, Karl M; Zheng, Xingwu; Wang, Guangli (2018). "The Parallax of the Red Hypergiant VX Sgr with Accurate Tropospheric Delay Calibration". The Astrophysical Journal. 859 (1): 14. arXiv:1804.00894. Bibcode:2018ApJ...859...14X. doi:10.3847/1538-4357/aabba6.
  37. ^ Lockwood, G.W.; Wing, R. F. (1982). "The light and spectrum variations of VX Sagittarii, an extremely cool supergiant". Monthly Notices of the Royal Astronomical Society. 198 (2): 385–404. Bibcode:1982MNRAS.198..385L. doi:10.1093/mnras/198.2.385.
  38. ^ Massey, Philip; Levesque, Emily M.; Olsen, K. A. G.; Plez, Bertrand; Skiff, B. A. (2007). "HV 11423: The Coolest Supergiant in the SMC". The Astrophysical Journal. 660 (1): 301–310. arXiv:astro-ph/0701769. Bibcode:2007ApJ...660..301M. doi:10.1086/513182.
  39. ^ Verhoelst, T.; Van Der Zypen, N.; Hony, S.; Decin, L.; Cami, J.; Eriksson, K. (2009). "The dust condensation sequence in red supergiant stars". Astronomy and Astrophysics. 498 (1): 127–138. arXiv:0901.1262. Bibcode:2009A&A...498..127V. doi:10.1051/0004-6361/20079063.
  40. ^ Levesque, Emily M; Massey, Philip; Olsen, K. A. G; Plez, Bertrand; Meynet, George; Maeder, Andre (2018). "The Dusty Progenitor Star of the Type II Supernova 2017eaw". Monthly Notices of the Royal Astronomical Society. 481 (2): 2536–2547. arXiv:1806.00348. doi:10.1093/mnras/sty2435.
  41. ^ Humphreys, R. M. (1978). "Studies of luminous stars in nearby galaxies. I. Supergiants and O stars in the Milky Way". The Astrophysical Journal Supplement Series. 38: 309. Bibcode:1978ApJS...38..309H. doi:10.1086/190559.
  42. ^ Davies, Ben; Kudritzki, Rolf-Peter; Figer, Donald F. (2010). "The potential of red supergiants as extragalactic abundance probes at low spectral resolution". Monthly Notices of the Royal Astronomical Society. 407 (2): 1203. arXiv:1005.1008. Bibcode:2010MNRAS.407.1203D. doi:10.1111/j.1365-2966.2010.16965.x.
  43. ^ a b Paumard, T; Pfuhl, O; Martins, F; Kervella, P; Ott, T; Pott, J-U; Le Bouquin, JB; Breitfelder, J; Gillessen, S; Perrin, G; Burtscher, L; Haubois, X; Brandner, W (2014). "GCIRS 7, a pulsating M1 supergiant at the Galactic centre . Physical properties and age". Astronomy & Astrophysics. 568 (85): A85. arXiv:1406.5320. Bibcode:2014A&A...568A..85P. doi:10.1051/0004-6361/201423991.
  44. ^ a b Pott, J.-U.; Eckart, A.; Glindemann, A.; Kraus, S.; Schöde, R.; Ghez, A. M.; Woillez, J.; Weigelt, G. (2008). "First VLTI infrared spectro-interferometry on GCIRS 7". Astronomy & Astrophysics. 487: 413–418. doi:10.1051/0004-6361/201423991.
  45. ^ Ramstedt, S.; Schöier, F. L.; Olofsson, H. (2009). "Circumstellar molecular line emission from S-type AGB stars: mass-loss rates and SiO abundances". Astronomy and Astrophysics. 499 (2): 515–527. arXiv:0903.1672. Bibcode:2009A&A...499..515R. doi:10.1051/0004-6361/200911730.
  46. ^ Ramstedt, S.; Schöier, F. L.; Olofsson, H.; Lundgren, A. A. (2006). "Mass-loss properties of S-stars on the AGB". Astronomy and Astrophysics. 454 (2): L103. arXiv:astro-ph/0605664. Bibcode:2006A&A...454L.103R. doi:10.1051/0004-6361:20065285.
  47. ^ Levesque, Emily M.; Massey, P.; Zytkow, A. N.; Morrell, N. (1 September 2014). "Discovery of a Thorne-̇Żytkow object candidate in the Small Magellanic Cloud". Monthly Notices of the Royal Astronomical Society: Letters. 443: L94–L98. arXiv:1406.0001. Bibcode:2014MNRAS.443L..94L. doi:10.1093/mnrasl/slu080.
  48. ^ Garcia-Hernandez, D. A; Manchado, A; Lambert, D. L; Plez, B; Garcia-Lario, P; D'Antona, F; Lugaro, M; Karakas, A. I; van Raai, M (2009). "Rb-rich Asymptotic Giant Branch stars in the Magellanic Clouds". The Astrophysical Journal. 705: L31–L35. arXiv:0909.4391. doi:10.1088/0004-637X/705/1/L31.
  49. ^ Dolan, Michelle M.; Mathews, Grant J.; Lam, Doan Duc; Lan, Nguyen Quynh; Herczeg, Gregory J.; Dearborn, David S. P. (2016). "Evolutionary Tracks for Betelgeuse". The Astrophysical Journal. 819 (1): 7. arXiv:1406.3143. Bibcode:2016ApJ...819....7D. doi:10.3847/0004-637X/819/1/7.
  50. ^ Neilson, H. R.; Lester, J. B.; Haubois, X. (December 2011). "Weighing Betelgeuse: Measuring the Mass of α Orionis from Stellar Limb-darkening". Astronomical Society of the Pacific. 9th Pacific Rim Conference on Stellar Astrophysics. Proceedings of a conference held at Lijiang, China in 14–20 April 2011. ASP Conference Series, Vol. 451: 117. arXiv:1109.4562. Bibcode:2010ASPC..425..103L.
  51. ^ a b Arroyo-Torres, B.; Wittkowski, M.; Chiavassa, A.; Scholz, M.; Freytag, B.; Marcaide, J. M.; Hauschildt, P. H.; Wood, P. R.; Abellan, F. J. (2015). "What causes the large extensions of red supergiant atmospheres?. Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres". Astronomy & Astrophysics. 575 (50): A50. arXiv:1501.01560. Bibcode:2015A&A...575A..50A. doi:10.1051/0004-6361/201425212.
  52. ^ a b Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E.; Thureau, N.; Ten Brummelaar, T. A.; Ridgway, S. T.; McAlister, H. A.; Sturmann, J.; Sturmann, L.; Turner, N. (2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging". The Astrophysical Journal. 785 (1): 46. arXiv:1405.4032. Bibcode:2014ApJ...785...46B. doi:10.1088/0004-637X/785/1/46.
  53. ^ Stickland, D. J. (1985). "IRAS observations of the cool galactic hypergiants". The Observatory. 105: 229. Bibcode:1985Obs...105..229S.
  54. ^ Odenwald, S. F. (1986). "An IRAS survey of IR excesses in G-type stars". Astrophysical Journal. 307: 711. Bibcode:1986ApJ...307..711O. doi:10.1086/164456.
  55. ^ Richichi, A.; Percheron, I.; Khristoforova, M. (2005). "CHARM2: An updated Catalog of High Angular Resolution Measurements". Astronomy and Astrophysics. 431 (4): 773–777.
  56. ^ "Carina Constellation". Constellation Guide. Retrieved 2017-10-28.
  57. ^ Achmad, L. (1992). "A photometric study of the G0-4 Ia(+) hypergiant HD 96918 (V382 Carinae)". Astronomy and Astrophysics. 259: 600–606. Bibcode:1992A&A...259..600A.
  58. ^ Guandalini, R; Francis, Charles (2010). "Infrared photometry and evolution of mass-losing AGB stars. III. Mass loss rates of MS and S stars". Astronomy and Astrophysics. 513: A4. arXiv:1002.2458. Bibcode:2010A&A...513A...4G. doi:10.1051/0004-6361/200911764.
  59. ^ Ramstedt, S; Schöier, F. L; Olofsson, H (2009). "Circumstellar molecular line emission from S-type AGB stars: Mass-loss rates and SiO abundances". Astronomy and Astrophysics. 499 (2): 515. arXiv:0903.1672. Bibcode:2009A&A...499..515R. doi:10.1051/0004-6361/200911730.
  60. ^ Bergeat, J.; Chevallier, L. (2005). "The mass loss of C-rich giants". Astronomy and Astrophysics. 429: 235–246. arXiv:astro-ph/0601366. Bibcode:2005A&A...429..235B. doi:10.1051/0004-6361:20041280.
  61. ^ Wasatonic, Richard P.; Guinan, Edward F.; Durbin, Allyn J. (2015). "V-Band, Near-IR, and TiO Photometry of the Semi-Regular Red Supergiant TV Geminorum: Long-Term Quasi-Periodic Changes in Temperature, Radius, and Luminosity". Publications of the Astronomical Society of the Pacific. 127 (956): 1010. Bibcode:2015PASP..127.1010W. doi:10.1086/683261.
  62. ^ Hawkins, G. W; Skinner, C. J; Meixner, M. M; Jernigan, J. G; Arens, J. F; Keto, E; Graham, J. R (1995). "Discovery of an Extended Nebula around AFGL 2343 (HD 179821) at 10 Microns". Astrophysical Journal. 452: 314. Bibcode:1995ApJ...452..314H. doi:10.1086/176303.
  63. ^ Massey, Philip; Evans, Kate Anne (2016). "The Red Supergiant Content of M31". The Astrophysical Journal. 826 (2): 224. doi:10.3847/0004-637X/826/2/224.
  64. ^ a b Ohnaka, K.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy & Astrophysics. 555: A24. arXiv:1304.4800. Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063.
  65. ^ Mark J. Pecaut; Eric E. Mamajek & Eric J. Bubar (February 2012). "A Revised Age for Upper Scorpius and the Star Formation History among the F-type Members of the Scorpius-Centaurus OB Association". Astrophysical Journal. 746 (2): 154. arXiv:1112.1695. Bibcode:2012ApJ...746..154P. doi:10.1088/0004-637X/746/2/154.
  66. ^ Pugh, T.; Gray, D. F. (2013-02-01). "On the Six-year Period in the Radial Velocity of Antares A". The Astronomical Journal. 145 (2): 38. Bibcode:2013AJ....145...38P. doi:10.1088/0004-6256/145/2/38. ISSN 0004-6256.
  67. ^ Baade, R.; Reimers, D. (2007-10-01). "Multi-component absorption lines in the HST spectra of alpha Scorpii B". Astronomy and Astrophysics. 474 (1): 229–237. Bibcode:2007A&A...474..229B. doi:10.1051/0004-6361:20077308. ISSN 0004-6361.
  68. ^ Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. (June 2018). "The convective photosphere of the red supergiant CE Tau. I. VLTI/PIONIER H-band interferometric imaging". Astronomy & Astrophysics. 614 (12): A12. arXiv:1802.06086. doi:10.1051/0004-6361/201731471.
  69. ^ Parker, Greg (July 2, 2012). "The second reddest star in the sky – 119 Tauri, CE Tauri". New Forest Observatory.
  70. ^ Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H.; et al. (2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics. 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode:2004A&A...421..703W. doi:10.1051/0004-6361:20035826.
  71. ^ Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. (2012). "The hypergiant HR 8752 evolving through the yellow evolutionary void". Astronomy & Astrophysics. 546: A105. Bibcode:2012A&A...546A.105N. doi:10.1051/0004-6361/201117166.
  72. ^ a b Hofmann, K.-H.; Eberhardt, M.; Driebe, T.; Schertl, D.; Scholz, M.; Schoeller, M.; Weigelt, G.; Wittkowski, M.; Woodruff, H. C. (2005). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Proceedings of the 13th Cambridge Workshop on Cool Stars. 560: 651. Bibcode:2005ESASP.560..651H.
  73. ^ Kaler, James B. "Hind's Crimson Star". STARS. Retrieved 2018-03-19.
  74. ^ Gorlova, N.; Lobel, A.; Burgasser, A. J.; Rieke, G. H.; Ilyin, I.; Stauffer, J. R. (2006). "On the CO Near‐Infrared Band and the Line‐splitting Phenomenon in the Yellow Hypergiant ρ Cassiopeiae". The Astrophysical Journal. 651 (2): 1130–1150. arXiv:astro-ph/0607158. Bibcode:2006ApJ...651.1130G. doi:10.1086/507590.
  75. ^ Men'shchikov1, A. B.; Balega, Y.; Blöcker, T.; Osterbart, R.; Weigelt, G. (2001). "Structure and physical properties of the rapidly evolving dusty envelope of IRC +10216 reconstructed by detailed two-dimensional radiative transfer modeling". Astronomy and Astrophysics. 392 (3): 921–929. arXiv:astro-ph/0206410. Bibcode:2002A&A...392..921M. doi:10.1051/0004-6361:20020954.
  76. ^ Tylenda, R.; Kamiński, T.; Schmidt, M.; Kurtev, R.; Tomov, T. (2011). "High-resolution optical spectroscopy of V838 Monocerotis in 2009". Astronomy & Astrophysics. 532: A138. arXiv:1103.1763. Bibcode:2011A&A...532A.138T. doi:10.1051/0004-6361/201116858.
  77. ^ Lane, B. F.; Retter, A.; Thompson, R. R.; Eisner, J. A. (April 2005). "Interferometric Observations of V838 Monocerotis". The Astrophysical Journal. 622 (2): L137–L140. arXiv:astro-ph/0502293. Bibcode:2005ApJ...622L.137L. doi:10.1086/429619.
  78. ^ Bedding, T. R.; et al. (April 1997), "The angular diameter of R Doradus: a nearby Mira-like star", Monthly Notices of the Royal Astronomical Society, 286 (4): 957–962, arXiv:astro-ph/9701021, Bibcode:1997MNRAS.286..957B, doi:10.1093/mnras/286.4.957
  79. ^ Dinh-V.-Trung; Muller, Sébastien; Lim, Jeremy; Kwok, Sun; Muthu, C. (2009). "Probing the Mass-Loss History of the Yellow Hypergiant IRC+10420". The Astrophysical Journal. 697 (1): 409–419. arXiv:0903.3714. Bibcode:2009ApJ...697..409D. doi:10.1088/0004-637X/697/1/409.
  80. ^ Najarro, F.; Figer, D. F.; Hillier, D. J.; Geballe, T. R.; Kudritzki, R. P. (2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal. 691 (2): 1816–1827. arXiv:0809.3185. Bibcode:2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816.
  81. ^ Luttermoser, Donald G.; Brown, Alexander (1992). "A VLA 3.6 centimeter survey of N-type carbon stars". Astrophysical Journal. 384: 634. Bibcode:1992ApJ...384..634L. doi:10.1086/170905.
  82. ^ a b Moravveji, Ehsan; Guinan, Edward F.; Khosroshahi, Habib; Wasatonic, Rick (2013). "The Age and Mass of the α Herculis Triple-star System from a MESA Grid of Rotating Stars with 1.3 <= M/M ⊙ <= 8.0". The Astronomical Journal. 146 (6): 148. arXiv:1308.1632. Bibcode:2013AJ....146..148M. doi:10.1088/0004-6256/146/6/148.
  83. ^ Rybicki, K. R.; Denis, C. (2001). "On the Final Destiny of the Earth and the Solar System". Icarus. 151 (1): 130–137. Bibcode:2001Icar..151..130R. doi:10.1006/icar.2001.6591.
  84. ^ Schröder, K.-P.; Connon Smith, R. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
  85. ^ Vassiliadis, E.; Wood, P.R. (1993). "Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss". The Astrophysical Journal. 413: 641. Bibcode:1993ApJ...413..641V. doi:10.1086/173033.
  86. ^ Gull, T. R.; Damineli, A. (2010). "JD13 – Eta Carinae in the Context of the Most Massive Stars". Proceedings of the International Astronomical Union. 5: 373–398. arXiv:0910.3158. Bibcode:2010HiA....15..373G. doi:10.1017/S1743921310009890.
  87. ^ Smith, Nathan (2011). "Explosions triggered by violent binary-star collisions: Application to Eta Carinae and other eruptive transients". Monthly Notices of the Royal Astronomical Society. 415 (3): 2020–2024. arXiv:1010.3770. Bibcode:2011MNRAS.415.2020S. doi:10.1111/j.1365-2966.2011.18607.x.
  88. ^ D. John Hillier; K. Davidson; K. Ishibashi; T. Gull (June 2001). "On the Nature of the Central Source in η Carinae". Astrophysical Journal. 553 (837): 837. Bibcode:2001ApJ...553..837H. doi:10.1086/320948.
  89. ^ Schiller, F.; Przybilla, N. (2008). "Quantitative spectroscopy of Deneb". Astronomy & Astrophysics. 479 (3): 849–858. arXiv:0712.0040. Bibcode:2008A&A...479..849S. doi:10.1051/0004-6361:20078590.
  90. ^ Ramirez, Ramses; Kaltenegger, Lisa (2017). "A Volcanic Hydrogen Habitable Zone". The Astrophysical Journal Letters. 837 (1): L4. arXiv:1702.08618. Bibcode:2017ApJ...837L...4R. doi:10.3847/2041-8213/aa60c8.
  91. ^ Kloppenborg, B.K.; Stencel, R.E.; Monnier, J.D.; Schaefer, G.H.; Baron, F.; Tycner, C.; Zavala, R.T.; Hutter, D.; Zhao, M.; Che, X.; Ten Brummelaar, T.A.; Farrington, C.D.; Parks, R.; McAlister, H. A.; Sturmann, J.; Sturmann, L.; Sallave-Goldfinger, P.J.; Turner, N.; Pedretti, E.; Thureau, N. (2015). "Interferometry of ɛ Aurigae: Characterization of the Asymmetric Eclipsing Disk". The Astrophysical Journal Supplement Series. 220 (1): 14. arXiv:1508.01909. Bibcode:2015ApJS..220...14K. doi:10.1088/0067-0049/220/1/14.
  92. ^ "Ask Andy: The Biggest Star". Ottawa Citizen. Nov 27, 1970. p. 23.
  93. ^ Lamers, H. J. G. L. M. (February 6–10, 1995). "Observations and Interpretation of Luminous Blue Variables". Proceedings of IAU Colloquium 155, Astrophysical applications of stellar pulsation. Astrophysical applications of stellar pulsation. Astronomical Society of the Pacific Conference Series. 83. Cape Town, South Africa: Astronomical Society of the Pacific. pp. 176–191. Bibcode:1995ASPC...83..176L.
  94. ^ Barniske, A.; Oskinova, L. M.; Hamann, W. -R. (2008). "Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas". Astronomy and Astrophysics. 486 (3): 971. arXiv:0807.2476. Bibcode:2008A&A...486..971B. doi:10.1051/0004-6361:200809568.
  95. ^ Moravveji, Ehsan; Guinan, Edward F.; Shultz, Matt; Williamson, Michael H.; Moya, Andres (March 2012). "Asteroseismology of the nearby SN-II Progenitor: Rigel. Part I. The MOST High-precision Photometry and Radial Velocity Monitoring". The Astrophysical Journal. 747 (1): 108–115. arXiv:1201.0843. Bibcode:2012ApJ...747..108M. doi:10.1088/0004-637X/747/2/108.
  96. ^ Baines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.; Zavala, R. T.; Benson, James A.; Hutter, Donald J.; Tycner, Christopher;; van Belle, Gerard T. (2017). "Fundamental parameters of 87 stars from the Navy Precision Optical Interferometer". The Astronomical Journal. 155 (1): 16. Bibcode:2018AJ....155...30B. doi:10.3847/1538-3881/aa9d8b.
  97. ^ Przybilla, N.; et al. (January 2006). "Quantitative spectroscopy of BA-type supergiants". Astronomy and Astrophysics. 445 (3): 1099–1126. arXiv:astro-ph/0509669. Bibcode:2006A&A...445.1099P. doi:10.1051/0004-6361:20053832.
  98. ^ Cruzalebes, P.; Jorissen, A.; Rabbia, Y.; Sacuto, S.; Chiavassa, A.; Pasquato, E.; Plez, B.; Eriksson, K.; Spang, A.; Chesneau, O. (2013). "Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER". Monthly Notices of the Royal Astronomical Society. 434 (1): 437–450. arXiv:1306.3288. Bibcode:2013MNRAS.434..437C. doi:10.1093/mnras/stt1037.
  99. ^ Eikenberry, S. S.; Matthews, K.; Lavine, J. L.; Garske, M. A.; Hu, D.; Jackson, M. A.; Patel, S. G.; Barry, D. J.; Colonno, M. R.; Houck, J. R.; Wilson, J. C.; Corbel, S.; Smith, J. D. (2004). "Infrared Observations of the Candidate LBV 1806‐20 and Nearby Cluster Stars". The Astrophysical Journal. 616 (1): 506–518. arXiv:astro-ph/0404435. Bibcode:2004ApJ...616..506E. doi:10.1086/422180.
  100. ^ Kennedy, Meghan. "LBV 1806-20 AB?". SolStation.com.
  101. ^ Figer, D. F.; Najarro, F.; Kudritzki, R. P. (2004). "The Double-lined Spectrum of LBV 1806-20". The Astrophysical Journal. 610 (2): L109–L112. arXiv:astro-ph/0406316. Bibcode:2004ApJ...610L.109F. doi:10.1086/423306.
  102. ^ Nazé, Y.; Rauw, G.; Hutsemékers, D. (2012). "The first X-ray survey of Galactic luminous blue variables". Astronomy & Astrophysics. 538 (47): A47. arXiv:1111.6375. Bibcode:2012A&A...538A..47N. doi:10.1051/0004-6361/201118040.
  103. ^ Piau, L; Kervella, P; Dib, S; Hauschildt, P (February 2011). "Surface convection and red-giant radius measurements". Astronomy and Astrophysics. 526: A100. arXiv:1010.3649. Bibcode:2011A&A...526A.100P. doi:10.1051/0004-6361/201014442.
  104. ^ Fadeyev, Y. A. (2015). "Evolutionary status of Polaris". Monthly Notices of the Royal Astronomical Society. 449 (1): 1011–1017. arXiv:1502.06463. Bibcode:2015MNRAS.449.1011F. doi:10.1093/mnras/stv412.
  105. ^ Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W. -R. (2014). "The Wolf–Rayet stars in the Large Magellanic Cloud". Astronomy & Astrophysics. 565 (27): A27. arXiv:1401.5474. Bibcode:2014A&A...565A..27H. doi:10.1051/0004-6361/201322696.
  106. ^ Crowther, P. A.; Schnurr, O.; Hirschi, R.; Yusof, N.; Parker, R. J.; Goodwin, S. P.; Kassim, H. A. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit". Monthly Notices of the Royal Astronomical Society. 408 (2): 731–751. arXiv:1007.3284. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x.
  107. ^ Ramírez, I.; Allende Prieto, C. (December 2011). "Fundamental Parameters and Chemical Composition of Arcturus". The Astrophysical Journal. 743 (2): 135. arXiv:1109.4425. Bibcode:2011ApJ...743..135R. doi:10.1088/0004-637X/743/2/135.
  108. ^ Ziółkowski, J. (2005), "Evolutionary constraints on the masses of the components of HDE 226868/Cyg X-1 binary system", Monthly Notices of the Royal Astronomical Society, 358 (3): 851–859, arXiv:astro-ph/0501102, Bibcode:2005MNRAS.358..851Z, doi:10.1111/j.1365-2966.2005.08796.x Note: For radius, see Table 1 with d=2 kpc.
  109. ^ Wright, K. O. (1977). "The system of VV Cephei derived from an analysis of the H-alpha line". Journal of the Royal Astronomical Society of Canada. 71: 152. Bibcode:1977JRASC..71..152W.
  110. ^ Hack, M.; Engin, S.; Yilmaz, N.; Sedmak, G.; Rusconi, L.; Boehm, C. (1992). "Spectroscopic study of the atmospheric eclipsing binary VV Cephei". Astronomy and Astrophysics Supplement Series. 95: 589. Bibcode:1992A&AS...95..589H. ISSN 0365-0138.

External links