Limiting absorption principle

In mathematics, the limiting absorption principle (LAP) is a concept from operator theory and scattering theory that consists of choosing the "correct" resolvent of a linear operator at the essential spectrum based on the behavior of the resolvent near the essential spectrum. The term is often used to indicate that the resolvent, when considered not in the original space (which is usually the space), but in certain weighted spaces (usually , see below), has a limit as the spectral parameter approaches the essential spectrum. This concept developed from the idea of introducing complex parameter into the Helmholtz equation for selecting a particular solution. This idea is credited to Vladimir Ignatowski, who was considering the propagation and absorption of the electromagnetic waves in a wire.[1] It is closely related to the Sommerfeld radiation condition and the limiting amplitude principle (1948). The terminology – both the limiting absorption principle and the limiting amplitude principle – was introduced by Aleksei Sveshnikov.[2]

Formulation edit

To find which solution to the Helmholz equation with nonzero right-hand side

 

with some fixed  , corresponds to the outgoing waves, one considers the limit[2][3]

 

The relation to absorption can be traced to the expression   for the electric field used by Ignatowsky: the absorption corresponds to nonzero imaginary part of  , and the equation satisfied by   is given by the Helmholtz equation (or reduced wave equation)  , with

 

having negative imaginary part (and thus with   no longer belonging to the spectrum of  ). Above,   is magnetic permeability,   is electric conductivity,   is dielectric constant, and   is the speed of light in vacuum.[1]


Example and relation to the limiting amplitude principle edit

One can consider the Laplace operator in one dimension, which is an unbounded operator   acting in   and defined on the domain  , the Sobolev space. Let us describe its resolvent,  . Given the equation

 ,

then, for the spectral parameter   from the resolvent set  , the solution   is given by   where   is the convolution of F with the fundamental solution G:

 

where the fundamental solution is given by

 

To obtain an operator bounded in  , one needs to use the branch of the square root which has positive real part (which decays for large absolute value of x), so that the convolution of G with   makes sense.

One can also consider the limit of the fundamental solution   as   approaches the spectrum of  , given by  . Assume that   approaches  , with some  . Depending on whether   approaches   in the complex plane from above ( ) or from below ( ) of the real axis, there will be two different limiting expressions:   when   approaches   from above and   when   approaches   from below. The resolvent   (convolution with  ) corresponds to outgoing waves of the inhomogeneous Helmholtz equation  , while   corresponds to incoming waves. This is directly related to the limiting amplitude principle: to find which solution corresponds to the outgoing waves, one considers the inhomogeneous wave equation

 

with zero initial data  . A particular solution to the inhomogeneous Helmholtz equation corresponding to outgoing waves is obtained as the limit of   for large times.[3]

Estimates in the weighted spaces edit

Let   be a linear operator in a Banach space  , defined on the domain  . For the values of the spectral parameter from the resolvent set of the operator,  , the resolvent   is bounded when considered as a linear operator acting from   to itself,  , but its bound depends on the spectral parameter   and tends to infinity as   approaches the spectrum of the operator,  . More precisely, there is the relation

 

Many scientists refer to the "limiting absorption principle" when they want to say that the resolvent   of a particular operator  , when considered as acting in certain weighted spaces, has a limit (and/or remains uniformly bounded) as the spectral parameter   approaches the essential spectrum,  . For instance, in the above example of the Laplace operator in one dimension,  , defined on the domain  , for  , both operators   with the integral kernels   are not bounded in   (that is, as operators from   to itself), but will both be uniformly bounded when considered as operators

 

with fixed  . The spaces   are defined as spaces of locally integrable functions such that their  -norm,

 

is finite.[4][5]

See also edit

References edit

  1. ^ a b W. v. Ignatowsky (1905). "Reflexion elektromagnetischer Wellen an einem Draft". Annalen der Physik. 18 (13): 495–522. Bibcode:1905AnP...323..495I. doi:10.1002/andp.19053231305.
  2. ^ a b Sveshnikov, A.G. (1950). "Radiation principle". Doklady Akademii Nauk SSSR. Novaya Seriya. 5: 917–920.
  3. ^ a b Smirnov, V.I. (1974). Course in Higher Mathematics. Vol. 4 (6 ed.). Moscow, Nauka.
  4. ^ Agmon, S (1975). "Spectral properties of Schrödinger operators and scattering theory" (PDF). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4). 2: 151–218.
  5. ^ Reed, Michael C.; Simon, Barry (1978). Methods of modern mathematical physics. Analysis of operators. Vol. 4. Academic Press. ISBN 0-12-585004-2.