Open main menu

Wikipedia β

In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace. It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions (with an additional location parameter) spliced together back-to-back, although the term is also sometimes used to refer to the Gumbel distribution. The difference between two independent identically distributed exponential random variables is governed by a Laplace distribution, as is a Brownian motion evaluated at an exponentially distributed random time. Increments of Laplace motion or a variance gamma process evaluated over the time scale also have a Laplace distribution.

Laplace
Probability density function
Probability density plots of Laplace distributions
Cumulative distribution function
Cumulative distribution plots of Laplace distributions
Parameters location (real)
scale (real)
Support
PDF
CDF
Mean
Median
Mode
Variance
Skewness
Ex. kurtosis
Entropy
MGF
CF

Contents

CharacterizationEdit

Probability density functionEdit

A random variable has a   distribution if its probability density function is

 
 

Here,   is a location parameter and  , which is sometimes referred to as the diversity, is a scale parameter. If   and  , the positive half-line is exactly an exponential distribution scaled by 1/2.

The probability density function of the Laplace distribution is also reminiscent of the normal distribution; however, whereas the normal distribution is expressed in terms of the squared difference from the mean  , the Laplace density is expressed in terms of the absolute difference from the mean. Consequently, the Laplace distribution has fatter tails than the normal distribution.

Cumulative distribution functionEdit

The Laplace distribution is easy to integrate (if one distinguishes two symmetric cases) due to the use of the absolute value function. Its cumulative distribution function is as follows:

 

The inverse cumulative distribution function is given by

 

Generating random variables according to the Laplace distributionEdit

Given a random variable   drawn from the uniform distribution in the interval  , the random variable

 

has a Laplace distribution with parameters   and  . This follows from the inverse cumulative distribution function given above.

A   variate can also be generated as the difference of two i.i.d.   random variables. Equivalently,   can also be generated as the logarithm of the ratio of two i.i.d. uniform random variables.

Parameter estimationEdit

Given   independent and identically distributed samples  , the maximum likelihood estimator   of   is the sample median,[1] and the maximum likelihood estimator   of   is the Mean Absolute Deviation from the Median

 

(revealing a link between the Laplace distribution and least absolute deviations).

MomentsEdit

 

where   is the generalized exponential integral function  .

Related distributionsEdit

  • If   then  .
  • If   then  . (Exponential distribution)
  • If   then  
  • If   then  .
  • If   then  . (Exponential power distribution)
  • If   (Normal distribution) then  .
  • If   then  . (Chi-squared distribution)
  • If   then  . (F-distribution)
  • If   (Uniform distribution) then  .
  • If   and   (Bernoulli distribution) independent of  , then  .
  • If   and   independent of  , then  
  • If   has a Rademacher distribution and   then  .
  • If   and   independent of  , then  .
  • If   (geometric stable distribution) then  .
  • The Laplace distribution is a limiting case of the hyperbolic distribution.
  • If   with   (Rayleigh distribution) then  .

Relation to the exponential distributionEdit

A Laplace random variable can be represented as the difference of two iid exponential random variables.[2] One way to show this is by using the characteristic function approach. For any set of independent continuous random variables, for any linear combination of those variables, its characteristic function (which uniquely determines the distribution) can be acquired by multiplying the corresponding characteristic functions.

Consider two i.i.d random variables  . The characteristic functions for   are

 

respectively. On multiplying these characteristic functions (equivalent to the characteristic function of the sum of the random variables  ), the result is

 

This is the same as the characteristic function for  , which is

 

Sargan distributionsEdit

Sargan distributions are a system of distributions of which the Laplace distribution is a core member. A  th order Sargan distribution has density[3][4]

 

for parameters  . The Laplace distribution results for  .

ApplicationsEdit

The Laplacian distribution has been used in speech recognition to model priors on DFT coefficients [5] and in JPEG image compression to model AC coefficients [6] generated by a DCT.

  • The addition of noise drawn from a Laplacian distribution, with scaling parameter appropriate to a function's sensitivity, to the output of a statistical database query is the most common means to provide differential privacy in statistical databases.
 
Fitted Laplace distribution to maximum one-day rainfalls [7]
  • The Lasso can be thought of as a Bayesian regression with a Laplacian prior.

HistoryEdit

This distribution is often referred to as Laplace's first law of errors. He published it in 1774 when he noted that the frequency of an error could be expressed as an exponential function of its magnitude once its sign was disregarded.[8][9]

Keynes published a paper in 1911 based on his earlier thesis wherein he showed that the Laplace distribution minimised the absolute deviation from the median.[10]

See alsoEdit

ReferencesEdit

  1. ^ Robert M. Norton (May 1984). "The Double Exponential Distribution: Using Calculus to Find a Maximum Likelihood Estimator". The American Statistician. American Statistical Association. 38 (2): 135–136. doi:10.2307/2683252. JSTOR 2683252. 
  2. ^ Kotz, Samuel; Kozubowski, Tomasz J.; Podgórski, Krzysztof (2001). The Laplace distribution and generalizations: a revisit with applications to Communications, Economics, Engineering and Finance. Birkhauser. pp. 23 (Proposition 2.2.2, Equation 2.2.8). ISBN 9780817641665. 
  3. ^ Everitt, B.S. (2002) The Cambridge Dictionary of Statistics, CUP. ISBN 0-521-81099-X
  4. ^ Johnson, N.L., Kotz S., Balakrishnan, N. (1994) Continuous Univariate Distributions, Wiley. ISBN 0-471-58495-9. p. 60
  5. ^ Eltoft, T.; Taesu Kim; Te-Won Lee (2006). "On the multivariate Laplace distribution" (PDF). IEEE Signal Processing Letters. 13 (5): 300–303. doi:10.1109/LSP.2006.870353. 
  6. ^ Minguillon, J.; Pujol, J. (2001). "JPEG standard uniform quantization error modeling with applications to sequential and progressive operation modes". Journal of Electronic Imaging. 10 (2): 475–485. doi:10.1117/1.1344592. 
  7. ^ CumFreq for probability distribution fitting [1]
  8. ^ Laplace, P-S. (1774). Mémoire sur la probabilité des causes par les évènements. Mémoires de l’Academie Royale des Sciences Presentés par Divers Savan, 6, 621–656
  9. ^ Wilson EB (1923) First and second laws of error. JASA 18, 143
  10. ^ Keynes JM (1911) The principal averages and the laws of error which lead to them. J Roy Stat Soc, 74, 322–331

External linksEdit