Laguna Amarga is a caldera and associated ignimbrite in the Andes of northwestern Argentina.

Laguna Amarga
Highest point
Coordinates27°32′33″S 68°21′51″W / 27.54250°S 68.36417°W / -27.54250; -68.36417GEOnet Names Server
Geography
LocationCatamarca Province, Argentina
Geology
Age of rockPliocene-Pleistocene
Mountain typeCaldera
Volcanic arc/beltCentral Volcanic Zone
Last eruption3.0 ± 0.2 mya

Laguna Amarga is part of the southern Central Volcanic Zone and one among several Miocene-Pliocene-Pleistocene volcanic centres of this volcanic region. The formation of magma chambers and thus of large volcanic systems has apparently been influenced by tectonic changes. The Laguna Amarga caldera is associated with the Cordillera Claudio Gay faults together with the Laguna Escondida and Wheelwright calderas, all of which are between 6.5 and 4 mya old.[1] Laguna Amarga and Laguna Verde are sometimes associated with the Vallecito ignimbrite instead.[2] The formation of the Laguna Amarga volcanic centre was probably influenced by orogenic changes in the Andes which triggered the formation of fractures in the crust.[3]

The Laguna Amarga caldera has a diameter of 33 kilometres (21 mi) and is linked to the Laguna Escondida caldera.[1] It is the largest caldera in the area[4] and may be part of an eastward migrating volcanic complex.[5] Tephras erupted during its formation have been found hundreds of kilometres from Laguna Amarga.[6]

The 630 km3 (150 cu mi) Laguna Verde ignimbrite was erupted 4-3 mya ago and is associated with these two calderas.[1] Other dates are 4.5 ± 0.5 to 3.0 ± 0.2 mya. The ignimbrite covers an area of 86.46 km2 (33.38 sq mi), cropping out southwest of the Laguna Amarga ignimbrite.[7] The Laguna Verde ignimbrite ranges from dacite to rhyolite in composition, containing biotite, pumice, quartz and sanidine.[2] Hydrothermally altered rocks occur in the area.[8]

The Laguna Amarga ignimbrite was erupted 5.1 mya ago,[9] or 3.7-4.1 mya, and it has a volume of over 70 km3 (17 cu mi).[10] It extends north-northwest from Peinado volcano. The ignimbrite is somewhat welded and contains vesicular pumice, and bears some similarity with the Cyclops ignimbrite 50 km (31 mi) away.[11] Further, the Laguna Amarga ignimbrites like the Cerro Blanco and Galan ignimbrites are rich in sodium.[10] It covers a surface area of 611.02 km2 (235.92 sq mi), cropping out around the Laguna Amarga. Another ignimbrite, Los Colorados, is located at the edge of the Amarga caldera but its eruptive centre is unknown.[7] After its formation, lava flows from Peinado[5] and Cerro El Condor overran the floor of the caldera[12] and monogenetic volcanos developed both on the caldera floor and on its ignimbrite.[4]

See also edit

References edit

  1. ^ a b c Naranjo, José Antonio; Villa, Víctor; Ramírez, Cristián; Pérez de Arce, Carlos. "Oligo - Holocene evolution of the southern part of the Central Andes: volcanism and tectonic" (PDF). biblioserver.sernageomin.cl. SERNAGEOMIN. Archived from the original (PDF) on 6 April 2017. Retrieved 21 June 2016.
  2. ^ a b Kay, Suzanne Mahlburg; Coira, Beatriz; Mpodozis, Constantino (2008). "Field trip guide: Neogene evolution of the central Andean Puna plateau and southern Central Volcanic Zone". GSA Field Guide 13: Field Trip Guides to the Backbone of the Americas in the Southern and Central Andes: Ridge Collision, Shallow Subduction, and Plateau Uplift. Vol. 13. pp. 117–181. doi:10.1130/2008.0013(05). ISBN 978-0-8137-0013-7.
  3. ^ Seggiaro, R.E.; Hongn, F.D. (1999). "Influencia tectónica en el volcanismo Cenozoico del Noroeste argentino". Acta Geológica Hispánica. 34 (2–3): 228–242. Retrieved 21 June 2016.
  4. ^ a b Grosse, Pablo; Ochi Ramacciotti, María Luisa; Escalante Fochi, Florencia; Guzmán, Silvina; Orihashi, Yuji; Sumino, Hirochika (1 September 2020). "Geomorphology, morphometry, spatial distribution and ages of mafic monogenetic volcanoes of the Peinado and Incahuasi fields, southernmost Central Volcanic Zone of the Andes". Journal of Volcanology and Geothermal Research. 401: 106966. Bibcode:2020JVGR..40106966G. doi:10.1016/j.jvolgeores.2020.106966. ISSN 0377-0273. S2CID 225294953.
  5. ^ a b Grosse, Pablo; Guzmán, Silvina R.; Nauret, François; Orihashi, Yuji; Sumino, Hirochika (May 2022). "Central vs. lateral growth and evolution of the < 100 ka Peinado composite volcano, southern Central Volcanic Zone of the Andes". Journal of Volcanology and Geothermal Research. 425: 107532. Bibcode:2022JVGR..42507532G. doi:10.1016/j.jvolgeores.2022.107532. S2CID 247416244.
  6. ^ Coira, Beatriz; Galli, Claudia I.; Mahlburg-Kay, Suzanne; Stockli, Daniel F.; Flores, Patrocinio; Eveling, Emilio; Coira, Beatriz; Galli, Claudia I.; Mahlburg-Kay, Suzanne; Stockli, Daniel F.; Flores, Patrocinio; Eveling, Emilio (May 2022). "Pliocene-Pleistocene ash-fall tuff deposits in the intermountain Humahuaca and Casa Grande basins, northwestern Argentina: tracers in chronostratigraphic reconstructions and key to identify their volcanic sources". Andean Geology. 49 (2): 208–237. doi:10.5027/andgeov49n2-3377. hdl:11336/196915. ISSN 0718-7106. S2CID 247305850.
  7. ^ a b Guzmán, Silvina; Grosse, Pablo; Montero-López, Carolina; Hongn, Fernando; Pilger, Rex; Petrinovic, Ivan; Seggiaro, Raúl; Aramayo, Alejandro (December 2014). "Spatial–temporal distribution of explosive volcanism in the 25–28°S segment of the Andean Central Volcanic Zone". Tectonophysics. 636: 170–189. Bibcode:2014Tectp.636..170G. doi:10.1016/j.tecto.2014.08.013. hdl:11336/32061.
  8. ^ Guevara, L.; Apaza, F. D.; Favetto, A.; Seggiaro, R.; Pomposiello, C.; Conde Serra, A. (1 July 2021). "Geoelectrical characterization of Socompa lagoon area in the Andean Central Volcanic Zone from 3-D audiomagnetotelluric inversion". Journal of Volcanology and Geothermal Research. 415: 107246. Bibcode:2021JVGR..41507246G. doi:10.1016/j.jvolgeores.2021.107246. ISSN 0377-0273. S2CID 233608193.
  9. ^ Schnurr, W.B.W.; Trumbull, R.B.; Clavero, J.; Hahne, K.; Siebel, W.; Gardeweg, M. (September 2007). "Twenty-five million years of silicic volcanism in the southern central volcanic zone of the Andes: Geochemistry and magma genesis of ignimbrites from 25 to 27 °S, 67 to 72 °W". Journal of Volcanology and Geothermal Research. 166 (1): 17–46. Bibcode:2007JVGR..166...17S. doi:10.1016/j.jvolgeores.2007.06.005.
  10. ^ a b Kay, Suzanne Mahlburg; Coira, Beatriz L.; Caffe, Pablo J.; Chen, Chang-Hwa (December 2010). "Regional chemical diversity, crustal and mantle sources and evolution of central Andean Puna plateau ignimbrites". Journal of Volcanology and Geothermal Research. 198 (1–2): 81–111. Bibcode:2010JVGR..198...81K. doi:10.1016/j.jvolgeores.2010.08.013.
  11. ^ Siebel, Wolfgang; Schnurr, Wolfgang B.W.; Hahne, Knut; Kraemer, Bernhard; Trumbull, Robert B.; van den Bogaard, Paul; Emmermann, Rolf (January 2001). "Geochemistry and isotope systematics of small- to medium-volume Neogene–Quaternary ignimbrites in the southern central Andes: evidence for derivation from andesitic magma sources". Chemical Geology. 171 (3–4): 213–237. Bibcode:2001ChGeo.171..213S. doi:10.1016/S0009-2541(00)00249-7.
  12. ^ Grosse, Pablo; Orihashi, Yuji; Guzmán, Silvina R.; Sumino, Hirochika; Nagao, Keisuke (4 April 2018). "Eruptive history of Incahuasi, Falso Azufre and El Cóndor Quaternary composite volcanoes, southern Central Andes". Bulletin of Volcanology. 80 (5): 44. Bibcode:2018BVol...80...44G. doi:10.1007/s00445-018-1221-5. ISSN 1432-0819. S2CID 134869390.