Open main menu

The Kuznetsov NK-12 is a Soviet turboprop engine of the 1950s, designed by the Kuznetsov design bureau. The NK-12 drives two large four-bladed contra-rotating propellers, 5.6 m (18 ft) diameter (NK-12MA), and 6.2 m (20 ft) diameter (NK-12MV). It is the most powerful turboprop engine to enter service.

NK-12
Kuznetsov NK-12M turboprop on Tu-95.jpg
NK-12M Turboprop engine on a Tu-95 at RIAT Fairford 1993
Type Turboprop
National origin Soviet Union
Manufacturer Kuznetsov Design Bureau
Major applications Antonov An-22
Tupolev Tu-95
Tupolev Tu-114
The exhaust ports of a NK-12 in an outboard nacelle on a Tu-95
A pair of Kuznetsov NK-12MAs installed on an Antonov An-22

Design and developmentEdit

The design that eventually became the NK-12 turboprop was developed after World War II by a team of Russian scientists and deported German engineers under Ferdinand Brandner, who had worked for Junkers previously; the design bureau was headed by chief engineer Nikolai D. Kuznetsov. Thus, the NK-12 design evolved from late-war German turboprop studies. This started with the postwar development of the wartime Jumo 022 turboprop design that was designed to develop 6,000 shp (4,500 kW), weighing 3,000 kg (6,600 lb). The effort continued with a 5,000 shp (3,700 kW), weighing 1,700 kg (3,700 lb), completed by 1947. Evolution to the TV-12 12,000 shp (8,900 kW) engine required extensive use of new Soviet-developed alloys and was completed in 1951.

The NK-12 remains the most powerful turboprop engine to enter service, although the Europrop TP400 (in 2005) has come close to this. Another engine of similar size, the Pratt & Whitney T57 with 15,000 shp (11,000 kW) and 5,000 lbf (22 kN) jet thrust, ran 3,100 hours before being cancelled in 1957.[1][2] The NK-12 powers the Tupolev Tu-95 bomber and its derivatives such as the Tu-142 maritime patrol aircraft and the Tupolev Tu-114 airliner (with NK-12MV), which still holds the title of the world's fastest propeller-driven aircraft despite being retired from service in 1991. It also powered the Antonov An-22 Antei (with NK-12MA), the world's largest aircraft at the time, and several types of amphibious assault craft, such as the A-90 Orlyonok "Ekranoplan".

The engine has a 14-stage axial-flow compressor, producing pressure ratios between 9:1 and 13:1 depending on altitude, with variable inlet guide vanes and blow-off valves for engine operability. The combustion system used is a cannular-type: each flame tube is centrally mounted on a downstream injector that ends in an annular secondary region. The contra-rotating propellers and compressor are driven by the five-stage axial turbine. Mass flow is 65 kg (143 lb) per second.[3]

VariantsEdit

Data from Alexandrov[4]

NK-12
9,300 kW (12,500 hp), initial development model, used on the Tupolev Tu-95 and Tupolev Tu-116
NK-12M
Used on the Tupolev Tu-114
NK-12MA
11,000 kW (15,000 hp), 6.2 m diameter (20 ft 4 in; 620 cm; 244 in) AV-90 propellers, used on the Antonov An-22
NK-12MK
11,000 kW (15,000 hp), 5.6 m diameter (18 ft 4 in; 560 cm; 220 in) propellers, built with corrosion-resistant materials, used on the A-90 Orlyonok
NK-12MP
11,000 kW (15,000 hp),[5] used on the Tupolev Tu-95MS and Tupolev Tu-142M
NK-12MV
11,000 kW (15,000 hp),[6] 5.6 m diameter (18 ft 4 in; 560 cm; 220 in) AV-60 propellers, used on the Tupolev Tu-95, Tupolev Tu-114, Tupolev Tu-126, and Tupolev Tu-142

ApplicationsEdit

Specifications (NK-12MV)Edit

Data from Aircraft engines of the World 1970[7], Civil Turboshaft/Turboprop Specifications[8]

General characteristics

  • Type: Turboprop engine
  • Length: 6 m (20 ft)
  • Diameter: 1,150 mm (45 in)
  • Dry weight: 2,900 kg (6,400 lb)

Components

Performance

  • Maximum power output: 11,000 kW (15,000 shp) (equivalent) / 11,000 kW (14,750 shp) + 2.78 kN (625 lbf) at 9,250 rpm
  • Overall pressure ratio: 13:1 at 9,250 rpm
  • Air mass flow: 65 kg/s (140 lb/s) at 9,250 rpm
  • Turbine inlet temperature: 1,250 K (980 °C)
  • Specific fuel consumption: 0.219 kg/kW/h (0.360 lb/shp/h)
  • Power-to-weight ratio: 3.7 kW/kg (2.3 hp/lb)

See alsoEdit

ReferencesEdit

  1. ^ Connors, J. (2010). The engines of Pratt & Whitney : a technical history. American Institute of Aeronautics and Astronautics. p. 294. ISBN 978-1-60086-711-8.
  2. ^ Mulready, Dick (2001). Advanced engine development at Pratt & Whitney : the inside story of eight special projects, 1946-1971. Society of Automotive Engineers. p. 20. ISBN 9780768006643.
  3. ^ "Creation of the TV-2 (NK-12) turboprop engine". www.airpages.ru. Retrieved 22 March 2019.
  4. ^ Alexandrov, N. (2000). "The same 'NC'". Dvigatel (in Russian). No. 1.
  5. ^ "NK-12MP, NK-12MK" (PDF). Ulyanovsk Higher Aviation School of Civil Aviation. Domestic Aerospace Engineering (in Russian). p. 19. Retrieved August 21, 2019.
  6. ^ "NK-12MV" (PDF). Ulyanovsk Higher Aviation School of Civil Aviation. Domestic Aerospace Engineering (in Russian). p. 18. Retrieved August 21, 2019.
  7. ^ Wilkinson, Paul H. (1970). Aircraft engines of the World 1970 (22nd ed.). London: Paul H. Wilkinson. p. 221.
  8. ^ Civil Turboshaft/Turboprop Specifications

External linksEdit