Open main menu

In mathematics, the Jacobi triple product is the mathematical identity:

for complex numbers x and y, with |x| < 1 and y ≠ 0.

It was introduced by Jacobi (1829) in his work Fundamenta Nova Theoriae Functionum Ellipticarum.

The Jacobi triple product identity is the Macdonald identity for the affine root system of type A1, and is the Weyl denominator formula for the corresponding affine Kac–Moody algebra.

Contents

PropertiesEdit

The basis of Jacobi's proof relies on Euler's pentagonal number theorem, which is itself a specific case of the Jacobi Triple Product Identity.

Let   and  . Then we have

 

The Jacobi Triple Product also allows the Jacobi theta function to be written as an infinite product as follows:

Let   and  

Then the Jacobi theta function

 

can be written in the form

 

Using the Jacobi Triple Product Identity we can then write the theta function as the product

 

There are many different notations used to express the Jacobi triple product. It takes on a concise form when expressed in terms of q-Pochhammer symbols:

 

where   is the infinite q-Pochhammer symbol.

It enjoys a particularly elegant form when expressed in terms of the Ramanujan theta function. For   it can be written as

 

ProofEdit

A simple proof is given by G. E. Andrews based on two identities of Euler.[1] For the analytic case, see Apostol, the first edition of which was published in 1976. Also see links below for a proof motivated with physics due to Borcherds[citation needed].

ReferencesEdit

  1. ^ Andrews, George E. (1965-02-01). "A simple proof of Jacobi's triple product identity". Proceedings of the American Mathematical Society. 16 (2): 333–333. doi:10.1090/S0002-9939-1965-0171725-X. ISSN 0002-9939. 

External linksEdit

  • A short combinatorial proof of the identity motivated with physics.