Iron cycle
Biogeochemical iron cycle: Iron circulates through the atmosphere, lithosphere, and oceans. Labeled arrows show flux in Tg of iron per year.[1][2][3][4] Iron in the ocean cycles between plankton, aggregated particulates (non-bioavailable iron), and dissolved (bioavailable iron), and becomes sediments through burial.[1][5][6] Hydrothermal vents release ferrous iron to the ocean[7] in addition to oceanic iron inputs from land sources. Iron reaches the atmosphere through volcanism,[8] aeolian wind,[9] and some via combustion by humans. In the Anthropocene, iron is removed from mines in the crust and a portion re-deposited in waste repositories.[4][6]

The iron cycle (Fe) is the biogeochemical cycle of iron through the atmosphere, hydrosphere, biosphere and lithosphere. While Fe is highly abundant in the Earth's crust,[10] it is less common in oxygenated surface waters. Iron is a key micronutrient in primary productivity,[11] and a limiting nutrient in High-Nutrient, Low-Chlorophyll (HNLC) regions of the ocean.[12] A critical component of the iron cycle is aeolian dust, which is transported from the Earth's land via the atmosphere to the ocean.

Iron exists in a range of oxidation states from -2 to +7; however, on Earth it is predominantly in its +2 or +3 redox state. The cycling of iron between its +2 and +3 oxidation states is referred to as the iron cycle. This process can be entirely abiotic or facilitated by microorganisms. Some examples of this include the rusting of iron-bearing metals (in this case, Fe2+ is abiotically oxidized to Fe3+) by oxygen, and the abiotic reduction of Fe3+ to Fe2+ by iron-sulfide minerals or the biological cycling of Fe2+-oxidizing microbes.[13]

Iron is an essential micro-nutrient for almost every life form, and is a primary redox-active metal on Earth.[14] Due to the high reactivity of Fe2+ with oxygen and low solubility of Fe3+, iron is a limiting nutrient in most regions of the world. Thus, the iron cycle is intrinsically linked to the cycling of other biologically-important elements.


The ocean is a critical component of the Earth's climate system, and the iron cycle plays a key role in ocean primary productivity and marine ecosystem function. The largest supply of iron to the oceans is from rivers, where it is suspended as sediment.[15] Other major sources of iron to the ocean include glacial particulates, atmospheric dust transport, and hydrothermal vents.[16] Iron supply is an important factor affecting growth of phytoplankton, the base of marine food web.[17] Uptake of iron by phytoplankton leads to lowest iron concentrations in surface seawater. Remineralization of sinking phytoplankton by zooplankton and bacteria.[11] recycles iron and causes higher deep water iron concentrations. Therefore, upwelling zones contain more iron than other areas of the surface ocean.[2]


The iron cycle is an important component of the terrestrial ecosystems. The ferrous form of iron, Fe2+, is dominant in the Earth's mantle, core, or deep crust. The ferric form, Fe3+, is more stable in the presence of oxygen gas.[18] Dust is a key component in the Earth's iron cycle. Chemical and biological weathering break down iron-bearing minerals, releasing the nutrient into the atmosphere. Changes in hydrological cycle and vegetative cover impact these patterns and have a large impact on global dust production, with dust deposition estimates ranging between 1000 and 2000 Tg/year.[2] Volcanic eruptions are also a key contributor to the terrestrial iron cycle, releasing iron-rich dust into the atmosphere in either a large burst or in smaller spurts over time.[19] The atmospheric transport of iron-rich dust can impact the ocean concentrations.[2]

Ancient earthEdit

On the early Earth, when atmospheric oxygen levels were 0.001% of those present today, dissolved Fe2+ was thought to have been a lot more abundant in the oceans, and thus more bioavailable to microbial life in that era.[20] At this time, before the onset of oxygenic photosynthesis, primary production may have been dominated by photoferrotrophs, which would obtain energy from sunlight, and use the electrons from Fe2+ to fix carbon.[21]

See alsoEdit


  1. ^ a b Nickelsen L, Keller D, Oschlies A (2015-05-12). "A dynamic marine iron cycle module coupled to the University of Victoria Earth System Model: the Kiel Marine Biogeochemical Model 2 for UVic 2.9". Geoscientific Model Development. 8 (5): 1357–1381. Bibcode:2015GMD.....8.1357N. doi:10.5194/gmd-8-1357-2015.
  2. ^ a b c d Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, et al. (April 2005). "Global iron connections between desert dust, ocean biogeochemistry, and climate". Science. 308 (5718): 67–71. Bibcode:2005Sci...308...67J. doi:10.1126/science.1105959. PMID 15802595.
  3. ^ Raiswell R, Canfield DE (2012). "The iron biogeochemical cycle past and present" (PDF). Geochemical Perspectives. 1: 1–232. doi:10.7185/geochempersp.1.1.
  4. ^ a b Wang T, Müller DB, Graedel TE (2007-07-01). "Forging the Anthropogenic Iron Cycle". Environmental Science & Technology. 41 (14): 5120–5129. Bibcode:2007EnST...41.5120W. doi:10.1021/es062761t.
  5. ^ Völker C, Tagliabue A (July 2015). "Modeling organic iron-binding ligands in a three-dimensional biogeochemical ocean model" (PDF). Marine Chemistry. 173: 67–77. doi:10.1016/j.marchem.2014.11.008.
  6. ^ a b Matsui H, Mahowald NM, Moteki N, Hamilton DS, Ohata S, Yoshida A, Koike M, Scanza RA, Flanner MG (April 2018). "Anthropogenic combustion iron as a complex climate forcer". Nature Communications. 9 (1): 1593. Bibcode:2018NatCo...9.1593M. doi:10.1038/s41467-018-03997-0. PMC 5913250. PMID 29686300.
  7. ^ Emerson D (2016). "The Irony of Iron - Biogenic Iron Oxides as an Iron Source to the Ocean". Frontiers in Microbiology. 6: 1502. doi:10.3389/fmicb.2015.01502. PMC 4701967. PMID 26779157.
  8. ^ Olgun N, Duggen S, Croot PL, Delmelle P, Dietze H, Schacht U, et al. (2011). "Surface ocean iron fertilization: The role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean" (PDF). Global Biogeochemical Cycles. 25 (4): n/a. Bibcode:2011GBioC..25.4001O. doi:10.1029/2009GB003761.
  9. ^ Gao Y, Kaufman YJ, Tanre D, Kolber D, Falkowski PG (2001-01-01). "Seasonal distributions of aeolian iron fluxes to the global ocean". Geophysical Research Letters. 28 (1): 29–32. Bibcode:2001GeoRL..28...29G. doi:10.1029/2000GL011926.
  10. ^ Taylor SR (1964). "Abundance of chemical elements in the continental crust: a new table". Geochimica et Cosmochimica Acta. 28 (8): 1273–1285. Bibcode:1964GeCoA..28.1273T. doi:10.1016/0016-7037(64)90129-2.
  11. ^ a b Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito MA (March 2017). "The integral role of iron in ocean biogeochemistry" (PDF). Nature. 543 (7643): 51–59. Bibcode:2017Natur.543...51T. doi:10.1038/nature21058. PMID 28252066.
  12. ^ Martin JH, Fitzwater SE (1988). "Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic". Nature. 331 (6154): 341–343. Bibcode:1988Natur.331..341M. doi:10.1038/331341a0.
  13. ^ Schmidt C, Behrens S, Kappler A (2010). "Ecosystem functioning from a geomicrobiological perspective – a conceptual framework for biogeochemical iron cycling". Environmental Chemistry. 7 (5): 399. doi:10.1071/EN10040.
  14. ^ Melton ED, Swanner ED, Behrens S, Schmidt C, Kappler A (December 2014). "The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle". Nature Reviews. Microbiology. 12 (12): 797–808. doi:10.1038/nrmicro3347. PMID 25329406.
  15. ^ Poulton SW (2002). "The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition" (PDF). American Journal of Science. 302 (9): 774–805. Bibcode:2002AmJS..302..774P. doi:10.2475/ajs.302.9.774.
  16. ^ Duggen S, Olgun N, Croot P, Hoffmann LJ, Dietze H, Delmelle P, Teschner C (2010). "The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review". Biogeosciences. 7 (3): 827–844. doi:10.5194/bg-7-827-2010.
  17. ^ Hutchins DA, Boyd PW (2016). "Marine phytoplankton and the changing ocean iron cycle". Nature Climate Change. 6 (12): 1072–1079. Bibcode:2016NatCC...6.1072H. doi:10.1038/nclimate3147.
  18. ^ Johnson CM, Beard BL (August 2005). "Geochemistry. Biogeochemical cycling of iron isotopes". Science. 309 (5737): 1025–7. doi:10.1126/science.1112552. PMID 16099969.
  19. ^ Achterberg EP, Moore CM, Henson SA, Steigenberger S, Stohl A, Eckhardt S, et al. (2013). "Natural iron fertilization by the Eyjafjallajökull volcanic eruption" (PDF). Geophysical Research Letters. 40 (5): 921–926. Bibcode:2013GeoRL..40..921A. doi:10.1002/grl.50221.
  20. ^ Canfield DE, Rosing MT, Bjerrum C (October 2006). "Early anaerobic metabolisms". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 361 (1474): 1819–34, discussion 1835–6. doi:10.1098/rstb.2006.1906. PMC 1664682. PMID 17008221.
  21. ^ Camacho A, Walter XA, Picazo A, Zopfi J (2017). "Photoferrotrophy: Remains of an Ancient Photosynthesis in Modern Environments". Frontiers in Microbiology. 8: 323. doi:10.3389/fmicb.2017.00323. PMC 5359306. PMID 28377745.

Further readingEdit