Gumbel distribution

In probability theory and statistics, the Gumbel distribution (also known as the type-I generalized extreme value distribution) is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions.

Probability density function
Probability distribution function
Cumulative distribution function
Cumulative distribution function
Parameters location (real)
scale (real)
where is the Euler–Mascheroni constant
Ex. kurtosis

This distribution might be used to represent the distribution of the maximum level of a river in a particular year if there was a list of maximum values for the past ten years. It is useful in predicting the chance that an extreme earthquake, flood or other natural disaster will occur. The potential applicability of the Gumbel distribution to represent the distribution of maxima relates to extreme value theory, which indicates that it is likely to be useful if the distribution of the underlying sample data is of the normal or exponential type. This article uses the Gumbel distribution to model the distribution of the maximum value. To model the minimum value, use the negative of the original values.

The Gumbel distribution is a particular case of the generalized extreme value distribution (also known as the Fisher–Tippett distribution). It is also known as the log-Weibull distribution and the double exponential distribution (a term that is alternatively sometimes used to refer to the Laplace distribution). It is related to the Gompertz distribution: when its density is first reflected about the origin and then restricted to the positive half line, a Gompertz function is obtained.

In the latent variable formulation of the multinomial logit model — common in discrete choice theory — the errors of the latent variables follow a Gumbel distribution. This is useful because the difference of two Gumbel-distributed random variables has a logistic distribution.

The Gumbel distribution is named after Emil Julius Gumbel (1891–1966), based on his original papers describing the distribution.[1][2]


The cumulative distribution function of the Gumbel distribution is


Standard Gumbel distributionEdit

The standard Gumbel distribution is the case where   and   with cumulative distribution function


and probability density function


In this case the mode is 0, the median is  , the mean is   (the Euler–Mascheroni constant), and the standard deviation is  

The cumulants, for n > 1, are given by



The mode is μ, while the median is   and the mean is given by


where   is the Euler–Mascheroni constant.

The standard deviation   is   hence   [3]

At the mode, where  , the value of   becomes  , irrespective of the value of  

If   are iid Gumbel random variables with parameters   then   is also a Gumbel random variable with parameters  .

If   are iid random variables such that   has the same distribution as   for all natural numbers  , then   is necessarily Gumbel distributed with scale parameter   (actually it suffices to consider just two distinct values of k>1 which are coprime).

Related distributionsEdit

  • If   has a Gumbel distribution, then the conditional distribution of Y = −X given that Y is positive, or equivalently given that X is negative, has a Gompertz distribution. The cdf G of Y is related to F, the cdf of X, by the formula   for y > 0. Consequently, the densities are related by  : the Gompertz density is proportional to a reflected Gumbel density, restricted to the positive half-line.[4]
  • If X is an exponentially distributed variable with mean 1, then −log(X) has a standard Gumbel distribution.
  • If   and   are independent, then   (see Logistic distribution).
  • If   are independent, then  . Note that  . More generally, the distribution of linear combinations of independent Gumbel random variables can be approximated by GNIG and GIG distributions.[5]

Theory related to the generalized multivariate log-gamma distribution provides a multivariate version of the Gumbel distribution.

Occurrence and applicationsEdit

Distribution fitting with confidence band of a cumulative Gumbel distribution to maximum one-day October rainfalls.[6]

Gumbel has shown that the maximum value (or last order statistic) in a sample of random variables following an exponential distribution minus the natural logarithm of the sample size [7] approaches the Gumbel distribution as the sample size increases.[8]

Concretely, let   be the probability distribution of   and   its cumulative distribution. Then the maximum value out of   realizations of   is smaller than   if and only if all realizations are smaller than  . So the cumulative distribution of the maximum value   satisfies


and, for large  , the right-hand-side converges to  

In hydrology, therefore, the Gumbel distribution is used to analyze such variables as monthly and annual maximum values of daily rainfall and river discharge volumes,[3] and also to describe droughts.[9]

Gumbel has also shown that the estimator r(n+1) for the probability of an event — where r is the rank number of the observed value in the data series and n is the total number of observations — is an unbiased estimator of the cumulative probability around the mode of the distribution. Therefore, this estimator is often used as a plotting position.

In number theory, the Gumbel distribution approximates the number of terms in a random partition of an integer[10] as well as the trend-adjusted sizes of maximal prime gaps and maximal gaps between prime constellations.[11]

Gumbel reparametrization tricksEdit

In machine learning, the Gumbel distribution is sometimes employed to generate samples from the categorical distribution. This technique is called "Gumbel-max trick" and is a special example of "reparametrization tricks".[12]

In detail, let   be nonnegative, and not all zero, and let   be independent samples of Gumbel(0, 1), then by routine integration,

That is,  

Equivalently, given any  , we can sample from its Boltzmann distribution by

Related equations include:[13]
  • If  , then  .
  •  .
  •  . That is, the Gumbel distribution is a max-stable distribution family.

Random variate generationEdit

Since the quantile function (inverse cumulative distribution function),  , of a Gumbel distribution is given by


the variate   has a Gumbel distribution with parameters   and   when the random variate   is drawn from the uniform distribution on the interval  .

Probability paperEdit

A piece of graph paper that incorporates the Gumbel distribution.

In pre-software times probability paper was used to picture the Gumbel distribution (see illustration). The paper is based on linearization of the cumulative distribution function   :


In the paper the horizontal axis is constructed at a double log scale. The vertical axis is linear. By plotting   on the horizontal axis of the paper and the  -variable on the vertical axis, the distribution is represented by a straight line with a slope 1 . When distribution fitting software like CumFreq became available, the task of plotting the distribution was made easier.

See alsoEdit


  1. ^ Gumbel, E.J. (1935), "Les valeurs extrêmes des distributions statistiques" (PDF), Annales de l'Institut Henri Poincaré, 5 (2): 115–158
  2. ^ Gumbel E.J. (1941). "The return period of flood flows". The Annals of Mathematical Statistics, 12, 163–190.
  3. ^ a b Oosterbaan, R.J. (1994). "Chapter 6 Frequency and Regression Analysis" (PDF). In Ritzema, H.P. (ed.). Drainage Principles and Applications, Publication 16. Wageningen, The Netherlands: International Institute for Land Reclamation and Improvement (ILRI). pp. 175–224. ISBN 90-70754-33-9.
  4. ^ Willemse, W.J.; Kaas, R. (2007). "Rational reconstruction of frailty-based mortality models by a generalisation of Gompertz' law of mortality" (PDF). Insurance: Mathematics and Economics. 40 (3): 468. doi:10.1016/j.insmatheco.2006.07.003.
  5. ^ Marques, F.; Coelho, C.; de Carvalho, M. (2015). "On the distribution of linear combinations of independent Gumbel random variables" (PDF). Statistics and Computing. 25: 683‒701. doi:10.1007/s11222-014-9453-5.
  6. ^ CumFreq, software for probability distribution fitting
  7. ^ user49229, Gumbel distribution and exponential distribution
  8. ^ Gumbel, E.J. (1954). Statistical theory of extreme values and some practical applications. Applied Mathematics Series. Vol. 33 (1st ed.). U.S. Department of Commerce, National Bureau of Standards. ASIN B0007DSHG4.
  9. ^ Burke, Eleanor J.; Perry, Richard H.J.; Brown, Simon J. (2010). "An extreme value analysis of UK drought and projections of change in the future". Journal of Hydrology. 388 (1–2): 131–143. Bibcode:2010JHyd..388..131B. doi:10.1016/j.jhydrol.2010.04.035.
  10. ^ Erdös, Paul; Lehner, Joseph (1941). "The distribution of the number of summands in the partitions of a positive integer". Duke Mathematical Journal. 8 (2): 335. doi:10.1215/S0012-7094-41-00826-8.
  11. ^ Kourbatov, A. (2013). "Maximal gaps between prime k-tuples: a statistical approach". Journal of Integer Sequences. 16. arXiv:1301.2242. Bibcode:2013arXiv1301.2242K. Article 13.5.2.
  12. ^ Jang, Eric; Gu, Shixiang; Poole, Ben (April 2017). Categorical Reparametrization with Gumble-Softmax. International Conference on Learning Representations (ICLR) 2017.
  13. ^ Balog, Matej; Tripuraneni, Nilesh; Ghahramani, Zoubin; Weller, Adrian (2017-07-17). "Lost Relatives of the Gumbel Trick". International Conference on Machine Learning. PMLR: 371–379.

External linksEdit