# Glasser's master theorem

In integral calculus, Glasser's master theorem explains how a certain broad class of substitutions can simplify certain integrals over the whole interval from ${\displaystyle -\infty }$ to ${\displaystyle +\infty .}$ It is applicable in cases where the integrals must be construed as Cauchy principal values, and a fortiori it is applicable when the integral converges absolutely. It is named after M. L. Glasser, who introduced it in 1983.[1]

## A special case: the Cauchy–Schlömilch transformation

A special case called the Cauchy–Schlömilch substitution or Cauchy–Schlömilch transformation[2] was known to Cauchy in the early 19th century.[3] It states that if

${\displaystyle u=x-{\frac {1}{x}}\,}$

then

${\displaystyle \operatorname {PV} \int _{-\infty }^{\infty }F(u)\,dx=\operatorname {PV} \int _{-\infty }^{\infty }F(x)\,dx\qquad ({\text{Note: }}F(u)\,dx,{\text{ not }}F(u)\,du)}$

where PV denotes the Cauchy principal value.

## The master theorem

If ${\displaystyle a}$ , ${\displaystyle a_{i}}$ , and ${\displaystyle b_{i}}$  are real numbers and

${\displaystyle u=x-a-\sum _{n=1}^{N}{\frac {|a_{n}|}{x-b_{n}}}}$

then

${\displaystyle \operatorname {PV} \int _{-\infty }^{\infty }F(u)\,dx=\operatorname {PV} \int _{-\infty }^{\infty }F(x)\,dx.}$

## Examples

• ${\displaystyle \int _{-\infty }^{\infty }{\frac {x^{2}\,dx}{x^{4}+1}}=\int _{-\infty }^{\infty }{\frac {dx}{\left(x-{\frac {1}{x}}\right)^{2}+2}}=\int _{-\infty }^{\infty }{\frac {dx}{x^{2}+2}}={\frac {\pi }{\sqrt {2}}}.}$

## References

1. ^ Glasser, M. L. "A Remarkable Property of Definite Integrals." Mathematics of Computation 40, 561–563, 1983.
2. ^ T. Amdeberhnan, M. L. Glasser, M. C. Jones, V. H. Moll, R. Posey, and D. Varela, "The Cauchy–Schlömilch transformation", arxiv.org/pdf/1004.2445.pdf
3. ^ A. L. Cauchy, "Sur une formule generale relative a la transformation des integrales simples prises entre les limites 0 et ∞ de la variable." Oeuvres completes, serie 2, Journal de l’ecole Polytechnique, XIX cahier, tome XIII, 516–519, 1:275–357, 1823