Open main menu

Diagram of a gas centrifuge.

A gas centrifuge is a device that performs isotope separation of gases. A centrifuge relies on the principles of centripetal force accelerating molecules so that particles of different masses are physically separated in a gradient along the radius of a rotating container. A prominent use of gas centrifuges is for the separation of uranium-235 from uranium-238. The gas centrifuge was developed to replace the gaseous diffusion method of uranium-235 extraction. High degrees of separation of these isotopes relies on using many individual centrifuges arranged in cascade, that achieve successively higher concentrations. This process yields higher concentrations of uranium-235 while using significantly less energy compared to the gaseous diffusion process.


Centrifugal processEdit

The centrifuge relies on the force resulting from centripetal acceleration to separate molecules according to their mass, and can be applied to most fluids.[1] The dense (heavier) molecules move towards the wall and the lighter ones remain close to the center. The centrifuge consists of a rigid body rotor rotating at full period at high speed.[2] Concentric gas tubes located on the axis of the rotor are used to introduce feed gas into the rotor and extract the heavier and lighter separated streams.[2] For 235U production, the heavier stream is the waste stream and the lighter stream is the product stream. Modern Zippe-type centrifuges are tall cylinders spinning on a vertical axis, with a vertical temperature gradient applied to create a convective circulation rising in the center and descending at the periphery of the centrifuge. Diffusion between these opposing flows increases the separation by the principle of countercurrent multiplication.

In practice, since there are limits to how tall a single centrifuge can be made, several such centrifuges are connected in series. Each centrifuge receives one input and produces two output lines, corresponding to light and heavy fractions. The input of each centrifuge is the output (light) of the previous centrifuge and the output (heavy) of the following stage. This produces an almost pure light fraction from the output (light) of the last centrifuge and an almost pure heavy fraction from the output (heavy) of the first centrifuge.

Gas centrifugation processEdit

Cascade of gas centrifuges used to produce enriched uranium. U.S. gas centrifuge testbed in Piketon, Ohio, 1984. Each centrifuge is some 40 feet (12 m) tall. (Conventional centrifuges in use today are much smaller, less than 5 metres (16 ft) high.)

The gas centrifugation process utilizes a unique design that allows gas to constantly flow in and out of the centrifuge. Unlike most centrifuges which rely on batch processing, the gas centrifuge utilizes continuous processing, allowing cascading, in which multiple identical processes occur in succession. The gas centrifuge consists of a cylindrical rotor, a casing, an electric motor, and three lines for material to travel. The gas centrifuge is designed with a casing that completely encloses the centrifuge.[3] The cylindrical rotor is located inside the casing, which is evacuated of all air to produce a near frictionless rotation when operating. The motor spins the rotor, creating the centripetal force on the components as they enter the cylindrical rotor. There are two output lines, one located at the top of the centrifuge and the other located at the bottom. The heavier molecules will segregate to the bottom of the centrifuge while the lighter molecules will segregate to the top of the centrifuge. The output lines take these separations to other centrifuges to continue to the centrifugation process.[4] The process begins when the rotor is balanced in three stages.[5] Most of the technical details on gas centrifuges are difficult to obtain because they are shrouded in "nuclear secrecy".[5]

The early centrifuges used in the UK used an alloy body wrapped in epoxy impregnated glass fibre. Dynamic balancing of the assembly was accomplished by adding small traces of epoxy at the locations indicated by the balancing test unit. The motor was usually a pancake type located at the bottom of the cylinder. The early units were typically around 2 metres long (approx.), but subsequent developments gradually increased the length. The present generation are over 4 metres in length. The bearings are gas-based devices, as mechanical bearings would not survive at the normal operating speeds of these centrifuges.

A section of centrifuges would be fed with variable-frequency AC from an electronic (bulk) inverter, which would slowly ramp them up to the required speed, generally in excess of 50,000 rpm. One precaution was to quickly get past frequencies at which the cylinder was known to suffer resonance problems. The inverter is a high frequency unit capable of operating at frequencies around 1 kilohertz. The whole process is normally silent; if a noise is heard coming from a centrifuge, it is a warning of failure (which normally occurs very quickly). The design of the cascade normally allows for the failure of at least one centrifuge unit without compromising the operation of the cascade. The units are normally very reliable, with early models having operated continuously for over 30 years.

Later models have steadily increased the rotation speed of the centrifuges, as it is the velocity of the centrifuge wall that has the most effect on the separation efficiency.

A feature of the cascade system of centrifuges is that it is possible to increase plant throughput incrementally, by adding cascade "blocks" to the existing installation at suitable locations, rather than having to install a completely new line of centrifuges.

Separative work unitsEdit

The separative work unit (SWU) is a measure of the amount of work done by the centrifuge and has units of mass (typically kilogram separative work unit). The work   necessary to separate a mass   of feed of assay   into a mass   of product assay  , and tails of mass   and assay   is expressed in terms of the number of separative work units needed, given by the expression

where   is the value function, defined as

Practical application of centrifugationEdit

Separating uranium-235 from uranium-238Edit

The separation of uranium requires the material in a gaseous form; uranium hexafluoride (UF6) is used for uranium enrichment. Upon entering the centrifuge cylinder, the UF6 gas is rotated at a high speed. The rotation creates a strong centrifugal force that draws more of the heavier gas molecules (containing the U-238) toward the wall of the cylinder, while the lighter gas molecules (containing the U-235) tend to collect closer to the center. The stream that is slightly enriched in U-235 is withdrawn and fed into the next higher stage, while the slightly depleted stream is recycled back into the next lower stage.

Separation of zinc isotopesEdit

For some uses in nuclear technology, the content of zinc-64 in zinc metal has to be lowered in order to prevent formation of radioisotopes by its neutron activation. Diethyl zinc is used as the gaseous feed medium for the centrifuge cascade. An example of a resulting material is depleted zinc oxide, used as a corrosion inhibitor.


Suggested in 1919, the centrifugal process was first successfully performed in 1934. American scientist Jesse Beams and his team at the University of Virginia developed the process by separating two chlorine isotopes through a vacuum ultracentrifuge. It was one of the initial isotopic separation means pursued during the Manhattan Project, more particularly by Harold Urey and Karl P. Cohen, but research was discontinued in 1944 as it was felt that the method would not produce results by the end of the war, and that other means of uranium enrichment (gaseous diffusion and electromagnetic separation) had a better chance of success in the short term. This method was successfully used in the Soviet nuclear program, making the Soviet Union the most effective supplier of enriched uranium.

In the long term, especially with the development of the Zippe-type centrifuge, the gas centrifuge has become a very economical mode of separation, using considerably less energy than other methods and having numerous other advantages.

Pakistan involvementEdit

Effective usage of gas centrifuges were discovered by Pakistan which greatly enhances its capability to produce HEU fuels for both its commercial nuclear power plants and weapons. Pioneering research in physical performance of the centrifuges were studied by the Pakistani scientist Abdul Qadeer Khan in the 1970s–80s, using the meaningful vacuum methods for advancing the role of the centrifuges for the development of nuclear fuel.[3] According to one theoretical physicist involved in the program maintained that the centrifuge program was quite difficult, the most enduring, and challenging project that scientists were tackling and studying.[6][not in citation given] Many of the theorists working with A.Q. Khan were unsure that either gaseous and enriched uranium would be feasible on time.[6] The scientist recalled his memories: "No one in the world has used the [gas] centrifuge method to produce military-grade uranium.... This was not going to work. He [A.Q. Khan] was simply wasting time."[6] Nonetheless and in spite of skepticism, the program was made feasible by Pakistan in the shortest time possible and enrichment by centrifuge has been used in physics experiments and effective physical use, particularly by Abdul Qadeer Khan in Pakistan, and the method was smuggled to at least three different countries by the end of the 20th century.[3][6]

See alsoEdit


  1. ^ Basics of Centrifuge - Cole Parmer
  2. ^ a b Khan, Abdul Qadeer; Atta, M. A.; Mirza, J. A. (1 September 1986). "Flow Induced Vibrations in Gas Tube Assembly of Centrifuge". Journal of Nuclear Science and Technology. 23 (9): 819–827. doi:10.1080/18811248.1986.9735059.CS1 maint: Multiple names: authors list (link)
  3. ^ a b c Gas Centrifuge Uranium Enrichment
  4. ^ What is a Gas Centrifuge? Archived 12 May 2003 at the Wayback Machine
  5. ^ a b Khan, A.Q.; Suleman, M.; Ashraf, M.; Khan, M. Zubair (1 November 1987). "Some Practical Aspects of Balancing an Ultra-Centrifuge Rotor". Journal of Nuclear Science and Technology. 24 (11): 951–959. doi:10.1080/18811248.1987.9733526.CS1 maint: Multiple names: authors list (link)
  6. ^ a b c d Brigadier-General (retired) Feroz Hassan Khan (November 7, 2012). "Mastering the Uranium Enrichment" (google book). Eating grass: the making of the Pakistani bomb. Stanford, California: Stanford University Press. p. 151. ISBN 978-0804776011. Retrieved 8 January 2013.


External linksEdit