Open main menu

Wikipedia β

In physics, a free particle is a particle that, in some sense, is not bound by an external force, or equivalently not in a region where its potential energy varies. In classical physics, this means the particle is present in a "field-free" space. In quantum mechanics, it means a region of uniform potential, usually set to zero in the region of interest since potential can be arbitrarily set to zero at any point (or surface in three dimensions) in space.

Contents

Classical free particleEdit

The classical free particle is characterized simply by a fixed velocity v. The momentum is given by

 

and the kinetic energy (equal to total energy) by

 

where m is the mass of the particle and v is the vector velocity of the particle.

Non-relativistic quantum free particleEdit

 
Propagation of de Broglie waves in 1d - real part of the complex amplitude is blue, imaginary part is green. The probability (shown as the colour opacity) of finding the particle at a given point x is spread out like a waveform, there is no definite position of the particle. As the amplitude increases above zero the curvature decreases, so the decreases again, and vice versa - the result is an alternating amplitude: a wave. Top: Plane wave. Bottom: Wave packet.

Mathematical descriptionEdit

A free quantum particle is described by the Schrödinger equation:

 

where ψ is the wavefunction of the particle at position r and time t. The solution for a particle with momentum p or wave vector k, at angular frequency ω or energy E, is given by the complex plane wave:

 

with amplitude A. As for all quantum particles free or bound, the Heisenberg uncertainty principles

 

(similarly for the y and z directions), and the De Broglie relations:

 

apply. Since the potential energy is (set to) zero, the total energy E is equal to the kinetic energy, which has the same form as in classical physics:

 

Measurement and calculationsEdit

The integral of the probability density function

 

where * denotes complex conjugate, over all space is the probability of finding the particle in all space, which must be unity if the particle exists:

 

This is the normalization condition for the wave function. The wavefunction is not normalizable for a plane wave, but is for a wavepacket.

Increasing amounts of wavepacket localization, meaning the particle becomes more localized.
In the limit ħ → 0, the particle's position and momentum become known exactly.
Interpretation of wave function for one spin-0 particle in one dimension. The wavefunctions shown are continuous, finite, single-valued and normalized. The colour opacity (%) of the particles corresponds to the probability density (which can measure in %) of finding the particle at the points on the x-axis.

Fourier decompositionEdit

The free particle wavefunction may be represented by a superposition of free particle momentum eigenfunctions ϕ(k), with coefficients given by the Fourier transform of the wavefunction:[1]

 

where the integral is over all k-space and   (to ensure that the wavepacket is a solution of the free particle Schrödinger equation). Here   is the value of the wave function at time 0 and   is the Fourier transform of  .

The expectation value of the momentum p for the complex plane wave is

 ,

and for the general wavepacket it is

 .

The expectation value of the energy E is

 .

Group velocity and phase velocityEdit

The phase velocity is defined to be the velocity at which a plane wave solution propagates, namely

 .

Meanwhile, suppose that the initial wave function   is a wave packet whose Fourier transform   is concentrated near a particular wave vector  . Then the group velocity of the plane wave is defined as

 ,

which agrees with the formula for the classical velocity of the particle. The group velocity is the (approximate) speed at which the whole wave packet propagates, while the phase velocity is the speed at which the individual peaks in the wave packet move.[2]

Relativistic quantum free particleEdit

There are a number of equations describing relativistic particles: see relativistic wave equations.

See alsoEdit

ReferencesEdit

  • Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, ISBN 978-0-13-146100-0
  • Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (2nd Edition), R. Eisberg, R. Resnick, John Wiley & Sons, 1985, ISBN 978-0-471-87373-0
  • Stationary States, A. Holden, College Physics Monographs (USA), Oxford University Press, 1971, ISBN 0-19-851121-3
  • Hall, Brian C. (2013), Quantum Theory for Mathematicians, Graduate Texts in Mathematics, 267, Springer, ISBN 978-1461471158 
  • Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145546 9
  • Elementary Quantum Mechanics, N.F. Mott, Wykeham Science, Wykeham Press (Taylor & Francis Group), 1972, ISBN 0-85109-270-5
  • Quantum mechanics, E. Zaarur, Y. Peleg, R. Pnini, Schaum’s Oulines, Mc Graw Hill (USA), 1998, ISBN 007-0540187

Further readingEdit

  • The New Quantum Universe, T.Hey, P.Walters, Cambridge University Press, 2009, ISBN 978-0-521-56457-1.
  • Quantum Field Theory, D. McMahon, Mc Graw Hill (USA), 2008, ISBN 978-0-07-154382-8
  • Quantum mechanics, E. Zaarur, Y. Peleg, R. Pnini, Schaum’s Easy Oulines Crash Course, Mc Graw Hill (USA), 2006, ISBN 978-007-145533-6