Fermi–Pasta–Ulam–Tsingou problem

In physics, the Fermi–Pasta–Ulam–Tsingou problem or formerly the Fermi–Pasta–Ulam problem was the apparent paradox in chaos theory that many complicated enough physical systems exhibited almost exactly periodic behavior – called Fermi–Pasta–Ulam–Tsingou recurrence (or Fermi–Pasta–Ulam recurrence) – instead of ergodic behavior.

The FPUT experimentEdit

If there is no nonlinearity (purple), all the amplitude in a mode will stay in that mode. If a quadratic nonlinearity is introduced in the elastic chain, energy can spread among all the mode, but if you wait long enough, you will see all the amplitude coming back in the original mode.

In the summer of 1953 Enrico Fermi, John Pasta, Stanislaw Ulam, and Mary Tsingou conducted numerical experiments (i.e. computer simulations) of a vibrating string that included a non-linear term (quadratic in one test, cubic in another, and a piecewise linear approximation to a cubic in a third). They found that the behavior of the system was quite different from what intuition would have led them to expect. Fermi thought that after many iterations, the system would exhibit thermalization, an ergodic behavior in which the influence of the initial modes of vibration fade and the system becomes more or less random with all modes excited more or less equally. Instead, the system exhibited a very complicated quasi-periodic behavior. They published their results in a Los Alamos technical report in 1955. (Enrico Fermi died in 1954, and so this technical report was published after Fermi's death.)

The FPUT experiment was important both in showing the complexity of nonlinear system behavior and the value of computer simulation in analyzing systems.

Name changeEdit

The original paper names Fermi, Pasta, and Ulam as authors (although Fermi died before the report was written) with an acknowledgement to Tsingou for her work in programming the MANIAC simulations. Mary Tsingou's contributions to the FPUT problem were largely ignored by the community until Dauxois (2008) published additional information regarding the development and called for the problem to be renamed to grant proper attribution.

The FPUT lattice systemEdit

Fermi, Pasta, Ulam, and Tsingou simulated the vibrating string by solving the following discrete system of nearest-neighbor coupled oscillators. We follow the explanation as given in Palais's article. Let there be N oscillators representing a string of length with equilibrium positions  , where   is the lattice spacing. Then the position of the j-th oscillator as a function of time is  , so that   gives the displacement from equilibrium. FPUT used the following equations of motion:


(Note: this equation is not equivalent to the classical one given in the French version of the article.)

This is just Newton's second law for the j-th particle. The first factor   is just the usual Hooke's law form for the force. The factor with   is the nonlinear force. We can rewrite this in terms of continuum quantities by defining   to be the wave speed, where   is the Young's modulus for the string ,and   is the density:


Connection to the KdV equationEdit

The continuum limit of the governing equations for the string (with the quadratic force term) is the Korteweg–de Vries equation (KdV equation.) The discovery of this relationship and of the soliton solutions of the KdV equation by Kruskal and Zabusky in 1965 was an important step forward in nonlinear system research. We reproduce below a derivation of this limit, which is rather tricky, as found in Palais's article. Beginning from the "continuum form" of the lattice equations above, we first define u(x, t) to be the displacement of the string at position x and time t. We'll then want a correspondence so that   is  .


We can use Taylor's theorem to rewrite the second factor for small   (subscripts of u denote partial derivatives):


Similarly, the second term in the third factor is


Thus, the FPUT system is


If one were to keep terms up to O(h) only and assume that   approaches a limit, the resulting equation is one which develops shocks, which is not observed. Thus one keeps the O(h2) term as well:


We now make the following substitutions, motivated by the decomposition of traveling-wave solutions (of the ordinary wave equation, to which this reduces when   vanish) into left- and right-moving waves, so that we only consider a right-moving wave. Let  . Under this change of coordinates, the equation becomes


To take the continuum limit, assume that   tends to a constant, and   tend to zero. If we take  , then


Taking   results in the KdV equation:


Zabusky and Kruskal argued that it was the fact that soliton solutions of the KdV equation can pass through one another without affecting the asymptotic shapes that explained the quasi-periodicity of the waves in the FPUT experiment. In short, thermalization could not occur because of a certain "soliton symmetry" in the system, which broke ergodicity.


External linksEdit